✈️Website Table of Contents🚁

LOG IN NOW....

πŸ”΅✈️ Aviation: Air Data Computers (ADC) and Digital Air Data Computers (DADC) 🚁

Aviation: Air Data Computers (ADC) and Digital Air Data Computers (DADC)


High performance and jet transport category aircraft pitot-static systems may be more complicated. These aircraft frequently operate at high altitude where the ambient temperature can exceed 50 °F below zero. The compressibility of air is also altered at high speeds and at high altitudes. Airflow around the fuselage changes, making it difficult to pick up consistent static pressure inputs. The pilot must compensate for all factors of air temperature and density to obtain accurate indications from instruments. While many analog instruments have compensating devices built into them, the use of an air data computer (ADC) is common for these purposes on high-performance aircraft. Moreover, modern aircraft utilize digital air data computers (DADC). The conversion of sensed air pressures into digital values makes them more easily manipulated by the computer to output accurate information that has compensated for the many variables encountered.


Teledyne’s 90004 TAS/Plus air data computer (ADC)


Essentially, all pressures and temperatures captured by sensors are fed into the ADC. Analog units utilize transducers to convert these to electrical values and manipulate them in various modules containing circuits designed to make the proper compensations for use by different instruments and systems. A DADC usually receives its data in digital format. Systems that do not have digital sensor outputs will first convert inputs into digital signals via an analog-to-digital converter. Conversion can take place inside the computer or in a separate unit designed for this function. Then, all calculation and compensations are performed digitally by the computer. Outputs from the ADC are electric to drive servo motors or for use as inputs in pressurization systems, flight control units, and other systems. DADC outputs are distributed to these same systems and the cockpit display using a digital data bus.


There are numerous benefits of using ADCs. Simplification of pitot-static plumbing lines creates a lighter, simpler, system with fewer connections, so it is less prone to leaks and easier to maintain. One-time compensation calculations can be done inside the computer, eliminating the need to build compensating devices into numerous individual instruments or units of the systems using the air data. DADCs can run a number of checks to verify the plausibility of data received from any source on the aircraft. Thus, the crew can be alerted automatically of a parameter that is out of the ordinary. Change to an alternate data source can also be automatic so accurate flight deck and systems operations are continuously maintained. In general, solid-state technology is more reliable and modern units are small and lightweight. Figure shows a schematic of how a DADC is connected into the aircraft’s pitot-static and other systems. 


ADCs receive input from the pitot-static sensing devices and process them for use by numerous aircraft systems.


You may like these posts