✈️Website Table of Contents🚁

LOG IN NOW....

🔵✈️ Most important features of Aircraft Hydraulic Systems 🚁

Aircraft Hydraulic Systems


The word “hydraulics” is based on the Greek word for water and originally meant the study of the physical behavior of water at rest and in motion. Today, the meaning has been expanded to include the physical behavior of all liquids, including hydraulic fluid. Hydraulic systems are not new to aviation. Early aircraft had hydraulic brake systems. As aircraft became more sophisticated, newer systems with hydraulic power were developed. 


Hydraulic systems in aircraft provide a means for the operation of aircraft components. The operation of landing gear, flaps, flight control surfaces, and brakes is largely accomplished with hydraulic power systems. Hydraulic system complexity varies from small aircraft that require fluid only for manual operation of the wheel brakes to large transport aircraft where the systems are large and complex. To achieve the necessary redundancy and reliability, the system may consist of several subsystems. Each subsystem has a power generating device (pump), reservoir, accumulator, heat exchanger, filtering system, etc. System operating pressure may vary from a couple hundred pounds per square inch (psi) in small aircraft and rotorcraft to 5,000 psi in large transports.


Hydraulic systems have many advantages as power sources for operating various aircraft units; they combine the advantages of light weight, ease of installation, simplification of inspection, and minimum maintenance requirements. Hydraulic operations are also almost 100 percent efficient, with only negligible loss due to fluid friction.


Aircraft Hydraulic Systems


Hydraulic Fluid 

Hydraulic system liquids are used primarily to transmit and distribute forces to various units to be actuated. Liquids are able to do this because they are almost incompressible. Pascal’s Law states that pressure applied to any part of a confined liquid is transmitted with undiminished intensity to every other part. Thus, if a number of passages exist in a system, pressure can be distributed through all of them by means of the liquid. 


Manufacturers of hydraulic devices usually specify the type of liquid best suited for use with their equipment in view of the working conditions, the service required, temperatures expected inside and outside the systems, pressures the liquid must withstand, the possibilities of corrosion, and other conditions that must be considered. If incompressibility and fluidity were the only qualities required, any liquid that is not too thick could be used in a hydraulic system. But a satisfactory liquid for a particular installation must possess a number of other properties. Some of the properties and characteristics that must be considered when selecting a satisfactory liquid for a particular system are discussed in the following paragraphs.


Viscosity 

One of the most important properties of any hydraulic fluid is its viscosity. Viscosity is internal resistance to flow. A liquid such as gasoline that has a low viscosity flows easily, while a liquid such as tar that has a high viscosity flows slowly. Viscosity increases as temperature decreases. A satisfactory liquid for a given hydraulic system must have enough body to give a good seal at pumps, valves, and pistons, but it must not be so thick that it offers resistance to flow, leading to power loss and higher operating temperatures. These factors add to the load and to excessive wear of parts. A fluid that is too thin also leads to rapid wear of moving parts or of parts that have heavy loads. The instruments used to measure the viscosity of a liquid are known as viscometers or viscosimeters. Several types of viscometers are in use today. The Saybolt viscometer measures the time required, in seconds, for 60 milliliters of the tested fluid at 100 °F to pass through a standard orifice. The time measured is used to express the fluid’s viscosity, in Saybolt universal seconds or Saybolt FUROL seconds. 


Chemical Stability 

Chemical stability is another property that is exceedingly important in selecting a hydraulic liquid. It is the liquid’s ability to resist oxidation and deterioration for long periods. All liquids tend to undergo unfavorable chemical changes under severe operating conditions. This is the case, for example, when a system operates for a considerable period of time at high temperatures. Excessive temperatures have a great effect on the life of a liquid. It should be noted that the temperature of the liquid in the reservoir of an operating hydraulic system does not always represent a true state of operating conditions. Localized hot spots occur on bearings, gear teeth, or at the point where liquid under pressure is forced through a small orifice. Continuous passage of a liquid through these points may produce local temperatures high enough to carbonize or sludge the liquid, yet the liquid in the reservoir may not indicate an excessively high temperature. 


Liquids with a high viscosity have a greater resistance to heat than light or low-viscosity liquids that have been derived from the same source. The average hydraulic liquid has a low viscosity. Fortunately, there is a wide choice of liquids available for use within the viscosity range required of hydraulic liquids.


Liquids may break down if exposed to air, water, salt, or other impurities, especially if they are in constant motion or subject to heat. Some metals, such as zinc, lead, brass, and copper, have an undesirable chemical reaction on certain liquids. These chemical processes result in the formation of sludge, gums, and carbon or other deposits that clog openings, cause valves and pistons to stick or leak, and give poor lubrication to moving parts. As soon as small amounts of sludge or other deposits are formed, the rate of formation generally increases more rapidly. As they are formed, certain changes in the physical and chemical properties of the liquid take place. The liquid usually becomes darker in color, higher in viscosity, and acids are formed.


Flash Point 

Flash point is the temperature at which a liquid gives off vapor in sufficient quantity to ignite momentarily or flash when a flame is applied. A high flash point is desirable for hydraulic liquids because it indicates good resistance to combustion and a low degree of evaporation at normal temperatures. 


Fire Point 

Fire point is the temperature at which a substance gives off vapor in sufficient quantity to ignite and continue to burn when exposed to a spark or flame. Like flash point, a high fire point is required of desirable hydraulic liquids.  


Types of Hydraulic 

Fluids To assure proper system operation and to avoid damage to nonmetallic components of the hydraulic system, the correct fluid must be used. When adding fluid to a system, use the type specified in the aircraft manufacturer’s maintenance manual or on the instruction plate affixed to the reservoir or unit being serviced. 

The three principal categories of hydraulic fluids are: 1. Minerals 2. Polyalphaolefins 3. Phosphate esters.


When servicing a hydraulic system, the technician must be certain to use the correct category of replacement fluid. Hydraulic fluids are not necessarily compatible. For example, contamination of the fire-resistant fluid MIL-H-83282 with MIL-H-5606 may render the MIL-H-83282 non-fire-resistant.


Mineral-Based Fluids 

Mineral oil-based hydraulic fluid (MIL-H-5606) is the oldest, dating back to the 1940s. It is used in many systems, especially where the fire hazard is comparatively low. MIL-H-6083 is simply a rust-inhibited version of MIL-H-5606. They are completely interchangeable. Suppliers generally ship hydraulic components with MIL-H-6083. Mineral-based hydraulic fluid (MIL–H-5606) is processed from petroleum. It has an odor similar to penetrating oil and is dyed red. Some synthetic hydraulic fluids are dyed purple and even green, depending on the identity of the fluid. Synthetic rubber seals are used with petroleum-based fluids.


Polyalphaolefin-Based Fluids 

MIL-H-83282 is a fire-resistant hydrogenated polyalphaolefinbased fluid developed in the 1960s to overcome the flammability characteristics of MIL-H-5606. MIL-H-83282 is significantly more flame resistant than MIL-H-5606, but a disadvantage is the high viscosity at low temperature. It is generally limited to –40 °F. However, it can be used in the same system and with the same seals, gaskets, and hoses as MIL-H-5606. MIL-H-46170 is the rust-inhibited version of MIL-H-83282. Small aircraft predominantly use MIL-H-5606, but some have switched to MIL-H-83282 if they can accommodate the high viscosity at low temperature. 


Phosphate Ester-Based Fluid 

These fluids are used in most commercial transport category aircraft and are extremely fire-resistant. However, they are not fireproof and under certain conditions, they burn. In addition, these fluids are very susceptible to contamination from water in the atmosphere. The earliest generation of these fluids was developed after World War II as a result of the growing number of aircraft hydraulic brake fires that drew the collective concern of the commercial aviation industry. Progressive development of these fluids occurred as a result of performance requirements of newer aircraft designs. The airframe manufacturers dubbed these new generations of hydraulic fluid, such as Skydrol® and Hyjet®, as types based on their performance. 


Today, types IV and V fluids are used. Two distinct classes of type IV fluids exist based on their density: class I fluids are low density and class II fluids are standard density. The class I fluids provide weight savings advantages versus class II. In addition to the type IV fluids that are currently in use, type V fluids are being developed in response to industry demands for a more thermally stable fluid at higher operating temperatures. Type V fluids will be more resistant to hydrolytic and oxidative degradation at high temperature than the type IV fluids.


Intermixing of Fluids 

Due to the difference in composition, petroleum-based and phosphate ester-based fluids will not mix; neither are the seals for any one fluid usable with or tolerant of any of the other fluids. Should an aircraft hydraulic system be serviced with the wrong type fluid, immediately drain and flush the system and maintain the seals according to the manufacturer’s specifications.


Aircraft Hydraulic Systems


Compatibility with Aircraft Materials 

Aircraft hydraulic systems designed around phosphate ester-based fluids should be virtually trouble-free if properly serviced. Phosphate ester-based fluids do not appreciably affect common aircraft metals—aluminum, silver, zinc, magnesium, cadmium, iron, stainless steel, bronze, chromium, and others—as long as the fluids are kept free of contamination. Thermoplastic resins, including vinyl compositions, nitrocellulose lacquers, oil-based paints, linoleum, and asphalt may be softened chemically due to phosphate ester-based fluids. However, this chemical action usually requires longer than just momentary exposure, and spills that are wiped up with soap and water do not harm most of these materials. Paints that are resistant to phosphate ester-based fluids include epoxies and polyurethanes. Today, polyurethanes are the standard of the aircraft industry because of their ability to keep a bright, shiny finish for long periods of time and for the ease with which they can be removed.


Hydraulic systems require the use of special accessories that are compatible with the hydraulic fluid. Appropriate seals, gaskets, and hoses must be specifically designated for the type of fluid in use. Care must be taken to ensure that the components installed in the system are compatible with the fluid. When gaskets, seals, and hoses are replaced, positive identification should be made to ensure that they are made of the appropriate material. Phosphate ester-based type V fluid is compatible with natural fibers and with a number of synthetics, including nylon and polyester, which are used extensively in most aircraft. Petroleum oil hydraulic system seals of neoprene or Buna-N are not compatible with phosphate ester-based fluids and must be replaced with seals of butyl rubber or ethylene-propylene elastomers.


Hydraulic Fluid Contamination 

Experience has shown that trouble in a hydraulic system is inevitable whenever the liquid is allowed to become contaminated. The nature of the trouble, whether a simple malfunction or the complete destruction of a component, depends to some extent on the type of contaminant. Two general contaminants are: 

• Abrasives, including such particles as core sand, weld spatter, machining chips, and rust. 

• Nonabrasives, including those resulting from oil oxidation and soft particles worn or shredded from seals and other organic components. 


Hydraulic System Flushing 

When inspection of hydraulic filters or hydraulic fluid evaluation indicates that the fluid is contaminated, flushing the system may be necessary. This must be done according to the manufacturer’s instructions; however, a typical procedure for flushing is as follows:


1. Connect a ground hydraulic test stand to the inlet and outlet test ports of the system. Verify that the ground unit fluid is clean and contains the same fluid as the aircraft. 

2. Change the system filters. 

3. Pump clean, filtered fluid through the system, and operate all subsystems until no obvious signs of contamination are found during inspection of the filters. Dispose of contaminated fluid and filter. Note: A visual inspection of hydraulic filters is not always effective. 

4. Disconnect the test stand and cap the ports. 

5. Ensure that the reservoir is filled to the full line or proper service level.


It is very important to check if the fluid in the hydraulic test stand, or mule, is clean before the flushing operation starts. A contaminated hydraulic test stand can quickly contaminate other aircraft if used for ground maintenance operations.


Health and Handling 

Some phosphate ester-based fluids are blended with performance additives. Phosphate esters are good solvents and dissolve away some of the fatty materials of the skin. Repeated or prolonged exposure may cause drying of the skin, which if unattended, could result in complications, such as dermatitis or even secondary infection from bacteria. Phosphate ester-based fluids could cause itching of the skin but have not been known to cause allergic-type skin rashes. Always use the proper gloves and eye protection when handling any type of hydraulic fluid. When phosphate ester-based mist or vapor exposure is possible, a respirator capable of removing organic vapors and mists must be worn. Ingestion of any hydraulic fluid should be avoided. Although small amounts do not appear to be highly hazardous, any significant amount should be tested in accordance with manufacturer’s direction, followed with hospital supervised stomach treatment.


Basic Hydraulic Systems 

Regardless of its function and design, every hydraulic system has a minimum number of basic components in addition to a means through which the fluid is transmitted. A basic system consists of a pump, reservoir, directional valve, check valve, pressure relieve valve, selector valve, actuator, and filter.  


Open Center Hydraulic Systems 

An open center system is one having fluid flow, but no pressure in the system when the actuating mechanisms are idle. The pump circulates the fluid from the reservoir, through the selector valves, and back to the reservoir. The open center system may employ any number of subsystems, with a selector valve for each subsystem. Unlike the closed center system, the selector valves of the open center system are always connected in series with each other. In this arrangement, the system pressure line goes through each selector valve. Fluid is always allowed free passage through each selector valve and back to the reservoir until one of the selector valves is positioned to operate a mechanism.


When one of the selector valves is positioned to operate an actuating device, fluid is directed from the pump through one of the working lines to the actuator. With the selector valve in this position, the flow of fluid through the valve to the reservoir is blocked. The pressure builds up in the system to overcome the resistance and moves the piston of the actuating cylinder; fluid from the opposite end of the actuator returns to the selector valve and flows back to the reservoir. Operation of the system following actuation of the component depends on the type of selector valve being used. Several types of selector valves are used in conjunction with the open center system. One type is both manually engaged and manually disengaged. First, the valve is manually moved to an operating position. Then, the actuating mechanism reaches the end of its operating cycle, and the pump output continues until the system relief valve relieves the pressure.  


The relief valve unseats and allows the fluid to flow back to the reservoir. The system pressure remains at the relief valve set pressure until the selector valve is manually returned to the neutral position. This action reopens the open center flow and allows the system pressure to drop to line resistance pressure.


The manually engaged and pressure disengaged type of selector valve is similar to the valve previously discussed. When the actuating mechanism reaches the end of its cycle, the pressure continues to rise to a predetermined pressure. The valve automatically returns to the neutral position and to open center flow.


Closed-Center Hydraulic Systems 

In the closed-center system, the fluid is under pressure whenever the power pump is operating. The three actuators are arranged in parallel and actuating units B and C are operating at the same time, while actuating unit A is not operating. This system differs from the open-center system in that the selector or directional control valves are arranged in parallel and not in series. The means of controlling pump pressure varies in the closed-center system. If a constant delivery pump is used, the system pressure is regulated by a pressure regulator. A relief valve acts as a backup safety device in case the regulator fails.


If a variable displacement pump is used, system pressure is controlled by the pump’s integral pressure mechanism compensator. The compensator automatically varies the volume output. When pressure approaches normal system pressure, the compensator begins to reduce the flow output of the pump. The pump is fully compensated (near zero flow) when normal system pressure is attained. When the pump is in this fully compensated condition, its internal bypass mechanism provides fluid circulation through the pump for cooling and lubrication. A relief valve is installed in the system as a safety backup. An advantage of the open-center system over the closed-center system is that the continuous pressurization of the system is eliminated. Since the pressure is built up gradually after the selector valve is moved to an operating position, there is very little shock from pressure surges. This action provides a smoother operation of the actuating mechanisms. The operation is slower than the closed-center system, in which the pressure is available the moment the selector valve is positioned. Since most aircraft applications require instantaneous operation, closed-center systems are the most widely used.


Hydraulic Power Systems

Evolution of Hydraulic Systems 

Smaller aircraft have relatively low flight control surface loads, and the pilot can operate the flight controls by hand. Hydraulic systems were utilized for brake systems on early aircraft. When aircraft started to fly faster and got larger in size, the pilot was not able to move the control surfaces by hand anymore, and hydraulic power boost systems were introduced. Power boost systems assist the pilot in overcoming high control forces, but the pilot still actuates the flight controls by cable or push rod.  


Many modern aircraft use a power supply system and fly-bywire flight control. The pilot input is electronically sent to the flight control servos. Cables or push rods are not used. Small power packs are the latest evolution of the hydraulic system. They reduce weight by eliminating hydraulic lines and large quantities of hydraulic fluid. Some manufacturers are reducing hydraulic systems in their aircraft in favor of electrically controlled systems. The Boeing 787 is the first aircraft designed with more electrical systems than hydraulic systems.


Hydraulic Power Pack System 

A hydraulic power pack is a small unit that consists of an electric pump, filters, reservoir, valves, and pressure relief valve. The advantage of the power pack is that there is no need for a centralized hydraulic power supply system and long stretches of hydraulic lines, which reduces weight. Power packs could be driven by either an engine gearbox or electric motor. Integration of essential valves, filters, sensors, and transducers reduces system weight, virtually eliminates any opportunity for external leakage, and simplifies troubleshooting. Some power pack systems have an integrated actuator. These systems are used to control the stabilizer trim, landing gear, or flight control surfaces directly, thus eliminating the need for a centralized hydraulic system.


Hydraulic System Components

Reservoirs 

The reservoir is a tank in which an adequate supply of fluid for the system is stored. Fluid flows from the reservoir to the pump, where it is forced through the system and eventually returned to the reservoir. The reservoir not only supplies the operating needs of the system, but it also replenishes fluid lost through leakage. Furthermore, the reservoir serves as an overflow basin for excess fluid forced out of the system by thermal expansion (the increase of fluid volume caused by temperature changes), the accumulators, and by piston and rod displacement.


The reservoir also furnishes a place for the fluid to purge itself of air bubbles that may enter the system. Foreign matter picked up in the system may also be separated from the fluid in the reservoir or as it flows through line filters. Reservoirs are either pressurized or nonpressurized.


Baffles and/or fins are incorporated in most reservoirs to keep the fluid within the reservoir from having random movement, such as vortexing (swirling) and surging. These conditions can cause fluid to foam and air to enter the pump along with the fluid. Many reservoirs incorporate strainers in the filler neck to prevent the entry of foreign matter during servicing. These strainers are made of fine mesh screening and are usually referred to as finger strainers because of their shape. Finger strainers should never be removed or punctured as a means of speeding up the pouring of fluid into the reservoir. Reservoirs could have an internal trap to make sure fluid goes to the pumps during negative-G conditions.


Most aircraft have emergency hydraulic systems that take over if main systems fail. In many such systems, the pumps of both systems obtain fluid from a single reservoir. Under such circumstances, a supply of fluid for the emergency pump is ensured by drawing the hydraulic fluid from the bottom of the reservoir. The main system draws its fluid through a standpipe located at a higher level. With this arrangement, should the main system’s fluid supply become depleted, adequate fluid is left for operation of the emergency system. Figure illustrates that the engine-driven pump (EDP) is not able to draw fluid any more if the reservoir gets depleted below the standpipe. The alternating current motor-driven pump (ACMP) still has a supply of fluid for emergency operations. 


Nonpressurized Reservoirs 

Nonpressurized reservoirs are used in aircraft that are not designed for violent maneuvers, do not fly at high altitudes, or in which the reservoir is located in the pressurized area of the aircraft. High altitude in this situation means an altitude where atmospheric pressure is inadequate to maintain sufficient flow of fluid to the hydraulic pumps. Most nonpressurized reservoirs are constructed in a cylindrical shape. The outer housing is manufactured from a strong corrosion-resistant metal. Filter elements are normally installed within the reservoir to clean returning system hydraulic fluid.


In some of the older aircraft, a filter bypass valve is incorporated to allow fluid to bypass the filter in the event the filter becomes clogged. Reservoirs can be serviced by pouring fluid directly into the reservoir through a filler strainer (finger strainer) assembly incorporated within the filler well to strain out impurities as the fluid enters the reservoir. Generally, nonpressurized reservoirs use a visual gauge to indicate the fluid quantity. Gauges incorporated on or in the reservoir may be a direct reading glass tube-type or a float-type rod that is visible through a transparent dome. In some cases, the fluid quantity may also be read in the cockpit through the use of quantity transmitters. A typical nonpressurized reservoir is shown in Figure. This reservoir consists of a welded body and cover assembly clamped together. Gaskets are incorporated to seal against leakage between assemblies. 


Nonpressurized reservoirs are slightly pressurized due to thermal expansion of fluid and the return of fluid to the reservoir from the main system. This pressure ensures that there is a positive flow of fluids to the inlet ports of the hydraulic pumps. Most reservoirs of this type are vented directly to the atmosphere or cabin with only a check valve and filter to control the outside air source. The reservoir system includes a pressure and vacuum relief valve. The purpose of the valve is to maintain a differential pressure range between the reservoir and cabin. A manual air bleed valve is installed on top of the reservoir to vent the reservoir. The valve is connected to the reservoir vent line to allow depressurization of the reservoir. The valve is actuated prior to servicing the reservoir to prevent fluid from being blown out of the filler as the cap is being removed. The manual bleed valve also needs to be actuated if hydraulic components need to be replaced.

Aircraft Hydraulic Systems


Pressurized Reservoirs 

Reservoirs on aircraft designed for high-altitude flight are usually pressurized. Pressurizing assures a positive flow of fluid to the pump at high altitudes when low atmospheric pressures are encountered. On some aircraft, the reservoir is pressurized by bleed air taken from the compressor section of the engine. On others, the reservoir may be pressurized by hydraulic system pressure.


Air-Pressurized Reservoirs 

Air-pressurized reservoirs are used in many commercial transport-type aircraft. Pressurization of the reservoir is required because the reservoirs are often located in wheel wells or other nonpressurized areas of the aircraft and at high altitude there is not enough atmospheric pressure to move the fluid to the pump inlet. Engine bleed air is used to pressurize the reservoir. The reservoirs are typically cylindrical in shape. The following components are installed on a typical reservoir: 


• Reservoir pressure relief valve—prevents over pressurization of the reservoir. Valve opens at a preset value. 

• Sight glasses (low and overfull)—provides visual indication for flight crews and maintenance personnel that the reservoir needs to be serviced. 

• Reservoir sample valve—used to draw a sample of hydraulic fluid for testing. 

• Reservoir drain valve—used to drain the fluids out of the reservoir for maintenance operation. 

• Reservoir temperature transducer—provides hydraulic fluid temperature information for the flight deck.

• Reservoir quantity transmitter—transmits fluid quantity to the flight deck so that the flight crew can monitor fluid quantity during flight.


Fluid-Pressurized Reservoirs 

Some aircraft hydraulic system reservoirs are pressurized by hydraulic system pressure. Regulated hydraulic pump output pressure is applied to a movable piston inside the cylindrical reservoir. This small piston is attached to and moves a larger piston against the reservoir fluid. The reduced force of the small piston when applied by the larger piston is adequate to provide head pressure for high altitude operation. The small piston protrudes out of the body of the reservoir. The amount exposed is used as a reservoir fluid quantity indicator.


Reservoir Servicing 

Nonpressurized reservoirs can be serviced by pouring fluid directly into the reservoir through a filler strainer (finger strainer) assembly incorporated within the filler well to strain out impurities as the fluid enters the reservoir. Many reservoirs also have a quick disconnect service port at the bottom of the reservoir. A hydraulic filler unit can be connected to the service port to add fluid to the reservoir. This method reduces the chances of contamination of the reservoir. Aircraft that use pressurized reservoirs often have a central filling station in the ground service bay to service all reservoirs from a single point.


Filters 

A filter is a screening or straining device used to clean the hydraulic fluid, preventing foreign particles and contaminating substances from remaining in the system. If such objectionable material were not removed, the entire hydraulic system of the aircraft could fail through the breakdown or malfunctioning of a single unit of the system.


The hydraulic fluid holds in suspension tiny particles of metal that are deposited during the normal wear of selector valves, pumps, and other system components. Such minute particles of metal may damage the units and parts through which they pass if they are not removed by a filter. Since tolerances within the hydraulic system components are quite small, it is apparent that the reliability and efficiency of the entire system depends upon adequate filtering.


Filters may be located within the reservoir, in the pressure line, in the return line, or in any other location the designer of the system decides that they are needed to safeguard the hydraulic system against impurities. Modern design often uses a filter module that contains several filters and other components. There are many models and styles of filters. Their position in the aircraft and design requirements determine their shape and size. Most filters used in modern aircraft are of the inline type. The inline filter assembly is comprised of three basic units: head assembly, bowl, and element. The head assembly is secured to the aircraft structure and connecting lines. Within the head, there is a bypass valve that routes the hydraulic fluid directly from the inlet to the outlet port if the filter element becomes clogged with foreign matter. The bowl is the housing that holds the element to the filter head and is removed when element removal is required.


The element may be a micron, porous metal, or magnetic type. The micron element is made of a specially treated paper and is normally thrown away when removed. The porous metal and magnetic filter elements are designed to be cleaned by various methods and replaced in the system.


Micron-Type Filters 

A typical micron-type filter assembly utilizes an element made of specially treated paper that is formed in vertical convolutions (wrinkles). An internal spring holds the elements in shape. The micron element is designed to prevent the passage of solids greater than 10 microns (0.000394 inch) in size. In the event that the filter element becomes clogged, the spring-loaded relief valve in the filter head bypasses the fluid after a differential pressure of 50 psi has been built up. Hydraulic fluid enters the filter through the inlet port in the filter body and flows around the element inside the bowl. Filtering takes place as the fluid passes through the element into the hollow core, leaving the foreign material on the outside of the element.


Aircraft Hydraulic Systems


Maintenance of Filters 

Maintenance of filters is relatively easy. It mainly involves cleaning the filter and element or cleaning the filter and replacing the element. Filters using the micron-type element should have the element replaced periodically according to applicable instructions. Since reservoir filters are of the micron type, they must also be periodically changed or cleaned. For filters using other than the micron-type element, cleaning the filter and element is usually all that is necessary. However, the element should be inspected very closely to ensure that it is completely undamaged. The methods and materials used in cleaning all filters are too numerous to be included in this text. Consult the manufacturer’s instructions for this information.


Filter Bypass Valve 

Filter modules are often equipped with a bypass relief valve. The bypass relief valve opens if the filter clogs, permitting continued hydraulic flow and operation of aircraft systems. Dirty oil is preferred over no flow at all. Figure shows the principle of operation of a filter bypass valve. The ball valve opens when the filter becomes clogged and the pressure over the filter increases.


Filter Differential Pressure Indicators 

The extent to which a filter element is loaded can be determined by measuring the drop in hydraulic pressure across the element under rated flow conditions. This drop, or differential pressure, provides a convenient means of monitoring the condition of installed filter elements and is the operating principle used in the differential pressure or loaded-filter indicators found on many filter assemblies. 


Pumps 

All aircraft hydraulic systems have one or more power-driven pumps and may have a hand pump as an additional unit when the engine-driven pump is inoperative. Power-driven pumps are the primary source of energy and may be either engine driven, electric motor driven, or air driven. As a general rule, electrical motor pumps are installed for use in emergencies or during ground operations. Some aircraft can deploy a ram air turbine (RAT) to generate hydraulic power.


Hand Pumps 

The hydraulic hand pump is used in some older aircraft for the operation of hydraulic subsystems and in a few newer aircraft systems as a backup unit. Hand pumps are generally installed for testing purposes, as well as for use in emergencies. Hand pumps are also installed to service the reservoirs from a single refilling station. The single refilling station reduces the chances for the introduction of fluid contamination. 


Several types of hand pumps are used: single action, double action, and rotary. A single action hand pump draws fluid into the pump on one stroke and pumps that fluid out on the next stroke. It is rarely used in aircraft due to this inefficiency.


Double-action hand pumps produce fluid flow and pressure on each stroke of the handle. The doubleaction hand pump consists essentially of a housing that has a cylinder bore and two ports, a piston, two spring-loaded check valves, and an operating handle. An O-ring on the piston seals against leakage between the two chambers of the piston cylinder bore. An O-ring in a groove in the end of the pump housing seals against leakage between the piston rod and housing.


When the piston is moved to the right, the pressure in the chamber left of the piston is lowered. The inlet port ball check valve opens, and hydraulic fluid is drawn into the chamber. At the same time, the rightward movement of the piston forces the piston ball check valve against its seat. Fluid in the chamber to the right of the piston is forced out of the outlet port into the hydraulic system. When the piston is moved to the left, the inlet port ball check valve seats. Pressure in the chamber left of the piston rises, forcing the piston ball check valve off of its seat. Fluid flows from the left chamber through the piston to the right chamber. The volume in the chamber right of the piston is smaller than that of the left chamber due to the displacement created by the piston rod. As the fluid from the left chamber flows into the smaller right chamber, the excess volume of fluid is forced out of the outlet port to the hydraulic system.


Power-Driven Pumps 

Many of the power driven hydraulic pumps of current aircraft are of variable delivery, compensator-controlled type. Constant delivery pumps are also in use. Principles of operation are the same for both types of pumps. Modern aircraft use a combination of engine-driven power pumps, electrical-driven power pumps, air-driven power pumps, power transfer units (PTU), and pumps driven by a RAT. For example, large aircraft, such as the Airbus A380, have two hydraulic systems, eight engine-driven pumps, and three electrical driven pumps. The Boeing 777 has three hydraulic systems with two engine driven pumps, four electrical driven pumps, two air driven pumps, and a hydraulic pump motor driven by the RAT.


Classification of Pumps 

All pumps may be classified as either positive displacement or nonpositive displacement. Most pumps used in hydraulic systems are positive displacement. A nonpositivedisplacement pump produces a continuous flow. However, because it does not provide a positive internal seal against slippage, its output varies considerably as pressure varies. Centrifugal and impeller pumps are examples of nonpositive-displacement pumps. If the output port of a nonpositive-displacement pump was blocked off, the pressure would rise, and output would decrease to zero. Although the pumping element would continue moving, flow would stop because of slippage inside the pump. In a positivedisplacement pump, slippage is negligible compared to the pump’s volumetric output flow. If the output port were plugged, pressure would increase instantaneously to the point that the pump pressure relief valve opens.


Flow Control Valves 

Flow control valves control the speed and/or direction of fluid flow in the hydraulic system. They provide for the operation of various components when desired and the speed at which the component operates. Examples of flow control valves include: selector valves, check valves, sequence valves, priority valves, shuttle valves, quick disconnect valves, and hydraulic fuses.


Pressure Control Valves 

The safe and efficient operation of fluid power systems, system components, and related equipment requires a means of controlling pressure. There are many types of automatic pressure control valves. Some of them are an escape for pressure that exceeds a set pressure; some only reduce the pressure to a lower pressure system or subsystem; and some keep the pressure in a system within a required range.


Shuttle Valves 

In certain fluid power systems, the supply of fluid to a subsystem must be from more than one source to meet system requirements. In some systems, an emergency system is provided as a source of pressure in the event of normal system failure. The emergency system usually actuates only essential components. The main purpose of the shuttle valve is to isolate the normal system from an alternate or emergency system. It is small and simple; yet, it is a very important component. The housing contains three ports—normal system inlet, alternate or emergency system inlet, and outlet. A shuttle valve used to operate more than one actuating unit may contain additional unit outlet ports. 


Accumulators 

The accumulator is a steel sphere divided into two chambers by a synthetic rubber diaphragm. The upper chamber contains fluid at system pressure, while the lower chamber is charged with nitrogen or air. Cylindrical types are also used in highpressure hydraulic systems. Many aircraft have several accumulators in the hydraulic system. There may be a main system accumulator and an emergency system accumulator. There may also be auxiliary accumulators located in various sub-systems.


The function of an accumulator is to: 

• Dampen pressure surges in the hydraulic system caused by actuation of a unit and the effort of the pump to maintain pressure at a preset level. 

• Aid or supplement the power pump when several units are operating at once by supplying extra power from its accumulated, or stored, power. 

• Store power for the limited operation of a hydraulic unit when the pump is not operating. 

• Supply fluid under pressure to compensate for small internal or external (not desired) leaks that would cause the system to cycle continuously by action of the pressure switches continually kicking in. 


Aircraft Hydraulic Systems


Heat Exchangers 

Transport-type aircraft use heat exchangers in their hydraulic power supply system to cool the hydraulic fluid from the hydraulic pumps. This extends the service life of the fluid and the hydraulic pumps. They are located in the fuel tanks of the aircraft. The heat exchangers use aluminum finned tubes to transfer heat from the fluid to the fuel. The fuel in the tanks that contain the heat exchangers must be maintained at a specific level to ensure adequate cooling of the fluid.  


Actuators 

An actuating cylinder transforms energy in the form of fluid pressure into mechanical force, or action, to perform work. It is used to impart powered linear motion to some movable object or mechanism. A typical actuating cylinder consists of a cylinder housing, one or more pistons and piston rods, and some seals. The cylinder housing contains a polished bore in which the piston operates, and one or more ports through which fluid enters and leaves the bore. The piston and rod form an assembly. The piston moves forward and backward within the cylinder bore, and an attached piston rod moves into and out of the cylinder housing through an opening in one end of the cylinder housing. 


Seals are used to prevent leakage between the piston and the cylinder bore and between the piston rod and the end of the cylinder. Both the cylinder housing and the piston rod have provisions for mounting and for attachment to an object or mechanism that is to be moved by the actuating cylinder.


Actuating cylinders are of two major types: single action and double action. The single-action (single port) actuating cylinder is capable of producing powered movement in one direction only. The double-action (two ports) actuating cylinder is capable of producing powered movement in two directions.


Ram Air Turbine (RAT) 

The RAT is installed in the aircraft to provide electrical and hydraulic power if the primary sources of aircraft power are lost. Ram air is used to turn the blades of a turbine that, in turn, operates a hydraulic pump and generator. The turbine and  pump assembly is generally installed on the inner surface of a door installed in the fuselage. The door is hinged, allowing the assembly to be extended into the slipstream by pulling a manual release in the flight deck. In some aircraft, the RAT automatically deploys when the main hydraulic pressure system fails, and/or electrical system malfunction occurs.


Power Transfer Unit (PTU) 

The PTU is able to transfer power but not fluid. It transfers power between two hydraulic systems. Different types of PTUs are in use; some can only transfer power in one direction while others can transfer power both ways. Some PTUs have a fixed displacement, while others use a variable displacement hydraulic pump. The two units, hydraulic pump and hydraulic motor, are connected via a single drive shaft so that power can be transferred between the two systems. Depending on the direction of power transfer, each unit in turn works either as a motor or a pump.


Hydraulic Motor-Driven Generator (HMDG) 

The HMDG is a servo-controlled variable displacement motor integrated with an AC generator. The HMDG is designed to maintain a desired output frequency of 400 Hz. In case of an electrical failure, the HMDG could provide an alternative source of electrical power. 


Seals 

Seals are used to prevent fluid from passing a certain point, and to keep air and dirt out of the system in which they are used. The increased use of hydraulics and pneumatics in aircraft systems has created a need for packings and gaskets of varying characteristics and design to meet the many variations of operating speeds and temperatures to which they are subjected. No one style or type of seal is satisfactory for all installations. Some of the reasons for this are:

• Pressure at which the system operates. 

• The type fluid used in the system. 

• The metal finish and the clearance between adjacent parts. 

• The type motion (rotary or reciprocating), if any. 


Seals are divided into three main classes: packings, gaskets, and wipers. A seal may consist of more than one component, such as an O-ring and a backup ring, or possibly an O-ring and two backup rings. Hydraulic seals used internally on a sliding or moving assembly are normally called packings. Hydraulic seals used between nonmoving fittings and bosses are normally called gaskets.


V-Ring Packings 

V-ring packings (AN6225) are one-way seals and are always installed with the open end of the V facing the pressure. V-ring packings must have a male and female adapter to hold them in the proper position after installation. It is also necessary to torque the seal retainer to the value specified by the manufacturer of the component being serviced, or the seal may not give satisfactory service. 


U-Ring 

U-ring packings (AN6226) and U-cup packings are used in brake assemblies and brake master cylinders. The U-ring and U-cup seals pressure in only one direction; therefore, the lip of the packings must face toward the pressure. U-ring packings are primarily low-pressure packings to be used with pressures of less than 1,000 psi.


O-Rings 

Most packings and gaskets used in aircraft are manufactured in the form of O-rings. An O-ring is circular in shape, and its cross-section is small in relation to its diameter. The cross-section is truly round and has been molded and trimmed to extremely close tolerances. The O-ring packing seals effectively in both directions. This sealing is done by distortion of its elastic compound.


Gaskets 

Gaskets are used as static (stationary) seals between two flat surfaces. Some of the more common gasket materials are asbestos, copper, cork, and rubber. Asbestos sheeting is used wherever a heat resistant gasket is needed. It is used extensively for exhaust system gaskets. Most asbestos exhaust gaskets have a thin sheet of copper edging to prolong their life.


Seal Materials 

Most seals are made from synthetic materials that are compatible with the hydraulic fluid used. Seals used for MIL-H-5606 hydraulic fluid are not compatible with phosphate ester-based fluids and servicing the hydraulic system with the wrong fluid could result in leaks and system malfunctions. Seals for systems that use MIl-H-5606 are made of neoprene or Buna-N. Seals for phosphate ester-based fluids are made from butyl rubber or ethylene-propylene elastomers.


O-Ring Installation 

When removing or installing O-rings, avoid using pointed or sharp-edged tools that might cause scratching or marring of hydraulic component surfaces or cause damage to the O-rings. Special tooling for the installation of O-rings is available. While using the seal removal and the installation tools, contact with cylinder walls, piston heads, and related precision components is not desirable. 


Wipers 

Wipers are used to clean and lubricate the exposed portions of piston shafts. They prevent dirt from entering the system and help protect the piston shaft against scoring. Wipers may be either metallic or felt. They are sometimes used together, a felt wiper installed behind a metallic wiper.

You may like these posts