✈️Website Table of Contents🚁

LOG IN NOW....

​🔵✈️ Important features of helicopter hazards and emergencies 🚁​

Helicopter: Emergencies and Hazards


Today, helicopters are quite reliable. However, emergencies do occur, whether a result of mechanical failure or pilot error, and should be anticipated. Regardless of the cause, the recovery needs to be quick and precise. By having a thorough knowledge of the helicopter and its systems, a pilot is able to handle the situation more readily. Helicopter emergencies and the proper recovery procedures should be discussed and, when possible, practiced in flight. In addition, by knowing the conditions that can lead to an emergency, many potential accidents can be avoided. 


Autorotation

In a helicopter, an autorotative descent is a power-off maneuver in which the engine is disengaged from the main rotor disk and the rotor blades are driven solely by the upward flow of air through the rotor. In other words, the engine is no longer supplying power to the main rotor.


The most common reason for an autorotation is failure of the engine or drive line, but autorotation may also be performed in the event of a complete tail rotor failure, since there is virtually no torque produced in an autorotation. In both cases, maintenance has often been a contributing factor to the failure. Engine failures are also caused by fuel contamination or exhaustion as well resulting in a forced autorotation.


If the engine fails, the freewheeling unit automatically disengages the engine from the main rotor, allowing it to rotate freely. Essentially, the freewheeling unit disengages anytime the engine revolutions per minute (rpm) is less than the rotor rpm.


At the instant of engine failure, the main rotor blades are producing lift and thrust from their angle of attack (AOA) and velocity. By lowering the collective (which must be done immediately in case of an engine failure), lift and drag are reduced, and the helicopter begins an immediate descent, thus producing an upward flow of air through the rotor disk. This upward flow of air through the rotor disk provides sufficient thrust to maintain rotor rpm throughout the descent. Since the tail rotor is driven by the main rotor transmission during autorotation, heading control is maintained with the antitorque pedals as in normal flight.


Several factors affect the rate of descent in autorotation: bank angle, density altitude, gross weight, rotor rpm, trim condition, and airspeed. The primary ways to control the rate of descent are with airspeed and rotor rpm. Higher or lower airspeed is obtained with the cyclic pitch control just as in normal powered flight. In theory, a pilot has a choice in the angle of descent, varying, from straight vertical to maximum horizontal range (which is the minimum angle of descent). Rate of descent is high at zero airspeed and decreases to a minimum at approximately 50–60 knots, depending upon the particular helicopter and the factors just mentioned. As the airspeed increases beyond that which gives minimum rate of descent, the rate of descent increases again.


When landing from an autorotation, the only energy available to arrest the descent rate and ensure a soft landing is the kinetic energy stored in the rotor blades. Tip weights can greatly increase this stored energy. A greater amount of rotor energy is required to stop a helicopter with a high rate of descent than is required to stop a helicopter that is descending more slowly. Therefore, autorotative descents at very low or very high airspeeds are more critical than those performed at the minimum rate of descent airspeed.


Each type of helicopter has a specific airspeed and rotor rpm at which a power-off glide is most efficient. The specific airspeed is somewhat different for each type of helicopter, but certain factors affect all configurations in the same manner. In general, rotor rpm maintained in the low green area  gives more distance in an autorotation. Heavier helicopter weights may require more collective to control rotor rpm. Some helicopters need slight adjustments to minimum rotor rpm settings for winter versus summer conditions, and high altitude versus sea level flights. For specific autorotation airspeed and rotor rpm combinations for a particular helicopter, refer to the Rotorcraft Flight Manual (RFM). The specific airspeed and rotor rpm for autorotation is established for each type of helicopter based on average weather, calm wind conditions, and normal loading. When the helicopter is operated with heavy loads in high density altitude or gusty wind conditions, best performance is achieved from a slightly increased airspeed in the descent. For autorotation at low density altitude and light loading, best performance is achieved from a slight decrease in normal airspeed. Following this general procedure of fitting airspeed and rotor rpm to existing conditions, a pilot can achieve approximately the same glide angle in any set of circumstances, and thereby estimate the touchdown point accurately.


It is important that pilots experience autorotations from various airspeeds. This provides better understanding of the necessary flight control inputs to achieve the desired airspeed, rotor rpm and autorotation performance, such as the maximum glide or minimum descent airspeed. The decision to use the appropriate airspeed and rotor rpm for the given conditions should be instinctive to reach a suitable landing area. The helicopter glide ratio is much less than that of a fixed-wing aircraft and takes some getting used to. The flare to land at 80 knots indicated airspeed (KIAS) will be significantly greater than that from 55 KIAS. Rotor rpm control is critical at these points to ensure adequate rotor energy for cushioning the landing.


Vortex ring state.


Use collective pitch control to manage rotor rpm. If rotor rpm builds too high during an autorotation, raise the collective sufficiently to decrease rpm back to the normal operating range, then reduce the collective to maintain proper rotor rpm. If the collective increase is held too long, the rotor rpm may decay rapidly. The pilot would have to lower the collective in order to regain rotor rpm. If the rpm begins decreasing, the pilot must again lower the collective. Always keep the rotor rpm within the established recommended range for the helicopter being flown.


RPM Control

Rotor rpm in low inertia rotor systems has been studied in simulator flight evaluations which indicate that the simultaneous application of aft cyclic, down collective, and alignment with the relative wind (trim) at a wide range of airspeeds, including cruise airspeeds, is critical for all operations during the entry of an autorotation. The applicable Rotorcraft Flight Manual (RFM) should be consulted to determine the appropriate procedure(s) for safely entering an autorotation. This is vitally important since the procedure(s) for safely entering an autorotation may vary with specific makes and/or models of helicopters. A basic discussion of the aerodynamics and control inputs for single rotor systems is in order here.


Helicopter pilots must understand the use of the collective for rotor rpm control during power off autorotations in a turn. Upward movement of the collective reduces the rpm and downward movement increases the rpm. Cyclic movement is primarily associated with attitude/airspeed control in powered flight but may not be given the credit appropriate for rotor rpm control during practice and emergency power off autorotations. As long as the line of cyclic movement is parallel with the flight path of the helicopter (trimmed), the aft movement of the cyclic also creates greater air flow up through the bottom of the rotor disk and contributes to an increase in rotor rpm. If the flight path is 10 degrees to the right of the longitudinal axis of the helicopter, theoretically, the cyclic should be moved 10 degrees aft and left of the longitudinal axis to get maximum air up through the rotor system.


As the pilot lowers the collective in reaction to a loss of power during cruise flight there may be a tendency for the nose of the helicopter to pitch down. As a result, the pilot may tend to lean forward slightly, which delays the application of simultaneous aft cyclic to prevent the pitch change and associated loss of rotor rpm. A slight gain in altitude at cruise airspeed during the power off entry into an autorotation should not be of great concern as is the case for the execution of practice or actual quick stops. 


Various accident investigations have concluded that, when faced with a real power failure at cruise airspeed, pilots are not simultaneously applying down collective, aft cyclic, and antitorque pedal inputs in a timely manner. Low inertia rotor systems store less kinetic energy during autorotation and, as a result, rotor rpm decays rapidly during deceleration and touchdown. Conversely, less energy is required to regain safe rotor rpm during autorotation entry and autorotative descent. The pilot should immediately apply simultaneous down collective, aft cyclic and trim the helicopter for entry into an autorotation initiated at cruise airspeed. If rotor rpm has been allowed to decrease, or has inadvertently decreased below acceptable limits, an application of aft cyclic may help rebuild rotor rpm. This application of aft cyclic must be made at least at a moderate rate and may be combined with a turn, either left or right, to increase airflow through the rotor system. This will work to increase rotor rpm. Care should be maintained to not over-speed the rotor system as this is attempted.


Risk Management during Autorotation Training 

The following sections describe enhanced guidelines for autorotations during rotorcraft/helicopter flight training, as stated in Advisory Circular (AC) 61-140. There are risks inherent in performing autorotations in the training environment, and in particular the 180-degree autorotation. This section describes an acceptable means, but not the only means, of training applicants for a rotorcraft/helicopter airman certificate to meet the qualifications for various rotorcraft/helicopter ratings. You may use alternate methods for training if you establish that those methods meet the requirements of the Helicopter Flying Handbook (HFH), FAA practical test standards (PTS), and the Rotorcraft Flight Manual (RFM).


Straight-In Autorotation

A straight-in autorotation is one made from altitude with no turns. Winds have a great effect on an autorotation. Strong headwinds cause the glide angle to be steeper due to the slower groundspeed. For example, if the helicopter is maintaining 60 KIAS and the wind speed is 15 knots, then the groundspeed is 45 knots. The angle of descent will be much steeper, although the rate of descent remains the same. The speed at touchdown and the resulting ground run depend on the groundspeed and amount of deceleration. The greater the degree of deceleration, or flare, and the longer it is held, the slower the touchdown speed and the shorter the ground run. Caution must be exercised at this point as the tail rotor will be the component of the helicopter closest to the ground. If timing is not correct and a landing attitude not set at the appropriate time, the tail rotor may contact the ground causing a forward pitching moment of the nose and possible damage to the helicopter.  


A headwind is a contributing factor in accomplishing a slow touchdown from an autorotative descent and reduces the amount of deceleration required. The lower the speed desired at touchdown, the more accurate the timing and speed of the flare must be, especially in helicopters with low-inertia rotor disks. If too much collective is applied too early during the final stages of the autorotation, the kinetic energy may be depleted, resulting in little or no cushioning effect available. This could result in a hard landing with corresponding damage to the helicopter. It is generally better practice to accept more ground run than a harder landing with minimal groundspeed. As proficiency increases, the amount of ground run may be reduced.


Autorotation with Turns

Turns (or a series of turns) can be made during autorotation to facilitate landing into the wind or avoiding obstacles. Turns during autorotation should be made early so that the remainder of the autorotation is flown identically to a straightin autorotation. The most common turns in an autorotation are 90 degrees and 180 degrees. The following technique describes an autorotation with a 180-degree turn.


The pilot establishes the aircraft on a downwind heading at the recommended airspeed, and parallel to the intended touchdown point. Then, taking the wind into account, the pilot establishes the ground track approximately 200 feet laterally from the desired course line to the touchdown point. In strong crosswind conditions, the pilot should be prepared to adjust the downwind leg closer or farther out, as appropriate. The pilot uses the autorotation entry airspeed recommended by the RFM. When abeam the intended touchdown point, the pilot smoothly reduces collective, then reduces power to the engine to show a split between the rotor rpm and engine rpm and simultaneously applies appropriate anti-torque pedal and cyclic to maintain proper attitude/airspeed. Throughout the autorotation, the pilot should continually crosscheck the helicopter’s attitude, rotor rpm, airspeed, and verify that the helicopter is in trim (centered trim ball).


After the descent and autorotation airspeed is established, the pilot initiates the 180-degree turn. For training operations, initially roll into a bank of at least 30 degrees, but no more than 60 degrees. It is important to maintain the proper airspeed, rotor rpm, and trim (centered trim ball) throughout the turn. Changes in the helicopter’s attitude and the angle of bank causes a corresponding change in rotor rpm within normal limits. Do not allow the nose to pitch up or down excessively during the maneuver, as it may cause undesirable rotor rpm excursions.  


Pitot-static airspeed indications may be unreliable or lag during an autorotational turn. The pilot should exercise caution to avoid using excessive aircraft pitch attitudes and to avoid chasing airspeed indications in an autorotational turn.


Note: Approaching the 90-degree point, check the position of the landing area. The second 90 degrees of the turn should end with a roll-out on a course line to the landing area. If the helicopter is too close, decrease the bank angle (to increase the radius of turn); if too far out, increase the bank angle (to decrease the radius of the turn). A bank angle of no more than 60 degrees should be encountered during this turn. Monitor the trim ball (along with one’s kinesthetic sense) and adjust as necessary with cyclic and anti-torque pedal to maintain coordinated flight. Prior to passing through 200 feet above ground level (AGL), if landing or making a surface-level power recovery, the turn should be completed, and the helicopter aligned with the intended touchdown area. Upon reaching the course line, set the appropriate crosswind correction. If the collective pitch was increased to control the rpm, it may need to be lowered on rollout to prevent decay in rotor rpm. 


This maneuver should be aborted at any point the following criteria is not met: if the helicopter is not in a stabilized approach to landing profile (i.e., it is not aligned as close as possible into the wind with the touchdown point, after completing the 180-degree turn); if the rotor rpm is not within limits; if the helicopter is not at a proper attitude/airspeed; or if the helicopter is not under proper control at 200 feet AGL. It is essential that the pilot on the controls (or a certificated flight instructor (CFI), when intervening) immediately abort the maneuver and execute a smooth power recovery and goaround. It is important for the CFI who is intervening at this point to remember that the go-around is a far safer option than trying to recover lost rotor rpm and reestablish or recover to the hover or even the preferred hover taxi. 


From all entry positions, but particularly true of the 180-degree entry, a primary concern is getting the aircraft into the course line with as much altitude as possible. Once the collective has been lowered and the engine set to flight idle, the helicopter will lose altitude. A delayed turn will result in a lower altitude when arriving on the course line. Additionally, an uncoordinated flight condition (trim-ball not centered) results in an increased sink rate, which may be unrecoverable if not corrected.


During the turn to the course line, the pilot should use a scan pattern to see outside as well as inside the cockpit. Of primary importance outside is maintaining the appropriate descending attitude and a proper turn rate. Essential items to scan inside are rotor rpm and centered trim ball. Rotor rpm will build anytime “G” forces are applied to the rotor system. Usually, this occurs in the turn to the course line and during the deceleration flare.


Throughout the maneuver, rotor rpm should be maintained in the range recommended in the RFM. Rotor rpm outside of the recommended range results in a higher rate of descent and less glide-ratio. When the rotor rpm exceeds the desired value as a result of increased G load in the turn, timely use of up collective will increase the pitch of the blades and slow the rotor to the desired rpm. In an autorotation, rotor rpm is the most critical element, as it provides the lift required to stabilize an acceptable rate of descent and the energy necessary to cushion the landing. Collective should be lowered to the full down position to maintain rotor rpm immediately following a loss of power. However, rapid or abrupt collective movement could lead to mast bumping in some rotorcraft with teetering rotor systems.


Energy is a very important property of all rotating components, and the kinetic energy stored in the rotor system is used to cushion the landing. More lift is produced at the bottom of an autorotation by raising the collective, which increases the angle of attack of the blades. The rotor rpm will also rapidly decay at this point and it is essential to properly time the flare and the final collective pull to fully arrest the descent and cushion the landing. Upon arriving into the course line prior to the flare, the scan should focus almost entirely outside.


Vortex Ring State

Vortex ring state (formerly referenced as settling-withpower) describes an aerodynamic condition in which a helicopter may be in a vertical descent with 20 percent up to maximum power applied, and little or no climb performance. The previously used term settling-with-power came from the fact that the helicopter keeps settling even though full engine power is applied.


In a normal out-of-ground-effect (OGE) hover, the helicopter is able to remain stationary by propelling a large mass of air down through the main rotor. Some of the air is recirculated near the tips of the blades, curling up from the bottom of the rotor disk and rejoining the air entering the rotor from the top. This phenomenon is common to all airfoils and is known as tip vortices. Tip vortices generate drag and degrade airfoil efficiency. As long as the tip vortices are small, their only effect is a small loss in rotor efficiency. However, when the helicopter begins to descend vertically, it settles into its own downwash, which greatly enlarges the tip vortices. In this vortex ring state, most of the power developed by the engine is wasted in circulating the air in a doughnut pattern around the rotor.


In addition, the helicopter may descend at a rate that exceeds the normal downward induced-flow rate of the inner blade sections. As a result, the airflow of the inner blade sections is upward relative to the disk. This produces a secondary vortex ring in addition to the normal tip vortices. The secondary vortex ring is generated about the point on the blade where the airflow changes from up to down. The result is an unsteady turbulent flow over a large area of the disk. Rotor efficiency is lost even though power is still being supplied from the engine.


A fully developed vortex ring state is characterized by an unstable condition in which the helicopter experiences uncommanded pitch and roll oscillations, has little or no collective authority, and achieves a descent rate that may approach 6,000 feet per minute (fpm) if allowed to develop. 


A vortex ring state may be entered during any maneuver that places the main rotor in a condition of descending in a column of disturbed air and low forward airspeed. Airspeeds that are below translational lift airspeeds are within this region of susceptibility to vortex ring state aerodynamics. This condition is sometimes seen during quick-stop type maneuvers or during recovery from autorotation.  


Retreating Blade Stall 

In forward flight, the relative airflow through the main rotor disk is different on the advancing and retreating side. The relative airflow over the advancing side is higher due to the forward speed of the helicopter, while the relative airflow on the retreating side is lower. This dissymmetry of lift increases as forward speed increases.


To generate the same amount of lift across the rotor disk, the advancing blade flaps up while the retreating blade flaps down. This causes the AOA to decrease on the advancing blade, which reduces lift, and increase on the retreating blade, which increases lift. At some point as the forward speed increases, the low blade speed on the retreating blade, and its high AOA cause a stall and loss of lift. 


Retreating blade stall is a factor in limiting a helicopter’s never-exceed speed (VNE) and its development can be felt by a low frequency vibration, pitching up of the nose, and a roll in the direction of the retreating blade. High weight, low rotor rpm, high density altitude, turbulence and/or steep, abrupt turns are all conducive to retreating blade stall at high forward airspeeds. As altitude is increased, higher blade angles are required to maintain lift at a given airspeed. Thus, retreating blade stall is encountered at a lower forward airspeed at altitude. Most manufacturers publish charts and graphs showing a VNE decrease with altitude.


When recovering from a retreating blade stall condition caused by high airspeed, moving the cyclic aft only worsens the stall as aft cyclic produces a flare effect, thus increasing the AOA. Pushing forward on the cyclic also deepens the stall as the AOA on the retreating blade is increased. While the first step in a proper recovery is usually to reduce collective, RBS should be evaluated in light of the relevant factors discussed in the previous paragraph and addressed accordingly. For example, if a pilot at high weight and high DA is about to conduct a high reconnaissance prior to a confined area operation where rolling into a steep turn causes onset of RBS, the recovery is to roll out of the turn. If the cause is low rotor rpm, then increase the rpm.


Ground Resonance

Helicopters with articulating rotors (usually designs with three or more main rotor blades) are subject to ground resonance, a destructive vibration phenomenon that occurs at certain rotor speeds when the helicopter is on the ground. Ground resonance is a mechanical design issue that results from the helicopter’s airframe having a natural frequency that can be intensified by an out-of-balance rotor. The unbalanced rotor disk vibrates at the same frequency (or multiple thereof) of the airframe’s resonant frequency, and the harmonic oscillation increases because the engine is adding power to the system, increasing the magnitude (amplitude) of the vibrations until the structure or structures fail. This condition can cause a helicopter to self-destruct in a matter of seconds.


Hard contact with the ground on one corner (and usually with wheel-type landing gear) can send a shockwave to the main rotor head, resulting in the blades of a three-blade rotor disk moving from their normal 120° relationship to each other. This movement occurs along the drag hinge and could result in something like 122°, 122°, and 116° between blades. When another part of the landing gear strikes the surface, the unbalanced condition could be further aggravated.


Dynamic Rollover

A helicopter is susceptible to a lateral rolling tendency, called dynamic rollover, when it is in contact with the surface during takeoffs or landings. For dynamic rollover to occur, some factor must first cause the helicopter to roll or pivot around a skid or landing gear wheel, until its critical rollover angle is reached. The angle at which dynamic rollover occurs will vary based on helicopter type. Then, beyond this point, main rotor thrust continues the roll and recovery is impossible. After this angle is achieved, the cyclic does not have sufficient range of control to eliminate the thrust component and convert it to lift. If the critical rollover angle is exceeded, the helicopter rolls on its side regardless of the cyclic corrections made. 


Low-G Conditions and Mast Bumping

“G” is an abbreviation for acceleration due to the earth’s gravity. A person standing on the ground or sitting in an aircraft in level flight is experiencing one G. An aircraft in a tight, banked turn with the pilot being pressed into the seat is experiencing more than one G or high-G conditions. A person beginning a downward ride in an elevator or riding down a steep track on a roller coaster is experiencing less than one G or low-G conditions. The best way for a pilot to recognize low G is a weightless feeling similar to the start of a downward elevator ride.


Helicopters rely on positive G to provide much or all of their response to pilot control inputs. The pilot uses the cyclic to tilt the rotor disk, and, at one G, the rotor is producing thrust equal to aircraft weight. The tilting of the thrust vector provides a moment about the center of gravity to pitch or roll the fuselage. In a low-G condition, the thrust and consequently the control authority are greatly reduced. 


Low Rotor RPM and Rotor Stall

Rotor rpm is a critically important parameter for all helicopter operations. Just as airplanes will not fly below a certain airspeed, helicopters will not fly below a certain rotor rpm. Safe rotor rpm ranges are marked on the helicopter’s tachometer and specified in the RFM. If the pilot allows the rotor rpm to fall below the safe operating range, the helicopter is in a low rpm situation. If the rotor rpm continues to fall, the rotor will eventually stall. 


Rotor stall should not be confused with retreating blade stall, which occurs at high forward speeds and over a small portion of the retreating blade tip. Retreating blade stall causes vibration and control problems, but the rotor is still very capable of providing sufficient lift to support the weight of the helicopter. Rotor stall, however, can occur at any airspeed, and the rotor quickly stops producing enough lift to support the helicopter, causing it to lose lift and descend rapidly.


System Malfunctions

By following the manufacturer’s recommendations regarding operating limits and procedures and periodic maintenance and inspections, many system and equipment failures can be eliminated. Certain malfunctions or failures can be traced to some error on the part of the pilot; therefore, appropriate flying techniques and use of threat and error management may help to prevent an emergency.


Antitorque System Failure

Antitorque failure usually falls into one of two categories. One is failure of the power drive portion of the tail rotor disk resulting in a complete loss of antitorque. The other category covers mechanical control failures prohibiting the pilot from changing or controlling tail rotor thrust even though the tail rotor may still be providing antitorque thrust.

Tail rotor drive system failures include driveshaft failures, tail rotor gearbox failures, or a complete loss of the tail rotor itself. In any of these cases, the loss of antitorque normally results in an immediate spinning of the helicopter’s nose. The helicopter spins to the right in a counterclockwise rotor disk and to the left in a clockwise system. This discussion is for a helicopter with a counterclockwise rotor disk. The severity of the spin is proportionate to the amount of power being used and the airspeed. An antitorque failure with a high-power setting at a low airspeed results in a severe spinning to the right. At low power settings and high airspeeds, the spin is less severe. High airspeeds tend to streamline the helicopter and keep it from spinning. 


Landing—Stuck Left Pedal

A stuck left pedal (high power setting), which might be experienced during takeoff or climb conditions, results in the left yaw of the helicopter nose when power is reduced. Rolling off the throttle and entering an autorotation only makes matters worse. The landing profile for a stuck left pedal is best described as a normal-to-steep approach angle to arrive approximately 2–3 feet landing gear height above the intended landing area as translational lift is lost. The steeper angle allows for a lower power setting during the approach and ensures that the nose remains to the right. 


Upon reaching the intended touchdown area and at the appropriate landing gear height, increase the collective smoothly to align the nose with the landing direction and cushion the landing. A small amount of forward cyclic is helpful to stop the nose from continuing to the right and directs the aircraft forward and down to the surface. In certain wind conditions, the nose of the helicopter may remain to the left with zero to near zero groundspeed above the intended touchdown point. If the helicopter is not turning, simply lower the helicopter to the surface. If the nose of the helicopter is turning to the right and continues beyond the landing heading, roll the throttle toward flight idle, which is the amount necessary to stop the turn while landing. Flight idle is an engine rpm in flight at a given altitude with the throttle set to the minimum, or idle, position. The flight idling rpm typically increase with an increase in altitude. If the helicopter is beginning to turn left, the pilot should be able to make the landing prior to the turn rate becoming excessive. However, if the turn rate begins to increase prior to the landing, simply add power to make a go-around and return for another landing.


Landing—Stuck Neutral or Right Pedal 

The landing profile for a stuck neutral or a stuck right pedal is a low-power approach terminating with a running or rollon landing. The approach profile can best be described as a shallow to normal approach angle to arrive approximately 2–3 feet landing gear height above the intended landing area with a minimum airspeed for directional control. The minimum airspeed is one that keeps the nose from continuing to yaw to the right.


Upon reaching the intended touchdown area and at the appropriate landing gear height, reduce the throttle as necessary to overcome the yaw effect if the nose of the helicopter remains to the right of the landing heading. The amount of throttle reduction will vary based on power applied and winds. The higher the power setting used to cushion the landing, the more the throttle reduction will be. A coordinated throttle reduction and increased collective will result in a very smooth touchdown with some forward groundspeed. If the nose of the helicopter is to the left of the landing heading, a slight increase in collective or aft cyclic may be used to align the nose for touchdown. The decision to land or go around has to be made prior to any throttle reduction. Using airspeeds slightly above translational lift may be helpful to ensure that the nose does not continue yawing to the right. If a go-around is required, increasing the collective too much or too rapidly with airspeeds below translational lift may cause a rapid spinning to the right.


Loss of Tail Rotor Effectiveness (LTE)

Loss of tail rotor effectiveness (LTE) or an unanticipated yaw is defined as an uncommanded, rapid yaw towards the advancing blade which does not subside of its own accord. It can result in the loss of the aircraft if left unchecked. It is very important for pilots to understand that LTE is caused by an aerodynamic interaction between the main rotor and tail rotor and not caused from a mechanical failure. Some helicopter types are more likely to encounter LTE due to the normal certification thrust produced by having a tail rotor that, although meeting certification standards, is not always able to produce the additional thrust demanded by the pilot.


A helicopter is a collection of compromises. Compare the size of an airplane propeller to that of a tail rotor. Then, consider the horsepower required to run the propeller. For example, a Cessna 172P is equipped with a 160-horsepower (HP) engine. A Robinson R-44 with a comparably sized tail rotor is rated for a maximum of 245 HP. If you assume the tail rotor consumes 50 HP, only 195 HP remains to drive the main rotor. If the pilot were to apply enough collective to require 215 HP from the engine, and enough left pedal to require 50 HP for the tail rotor, the resulting engine overload would lead to one of two outcomes: slow down (reduction in rpm) or premature failure. In either outcome, antitorque would be insufficient and total lift might be less than needed to remain airborne. 


Main Rotor Disk Interference (285–315°)

Winds at velocities of 10–30 knots from the left front cause the main rotor vortex to be blown into the tail rotor by the relative wind. This main rotor disk vortex causes the tail rotor to operate in an extremely turbulent environment. During a right turn, the tail rotor experiences a reduction of thrust as it comes into the area of the main rotor disk vortex. The reduction in tail rotor thrust comes from the airflow changes experienced at the tail rotor as the main rotor disk vortex moves across the tail rotor disk. 


Weathercock Stability (120–240°)

In this region, the helicopter attempts to weathervane, or weathercock, its nose into the relative wind. Unless a resisting pedal input is made, the helicopter starts a slow, uncommanded turn either to the right or left, depending upon the wind direction. If the pilot allows a right yaw rate to develop and the tail of the helicopter moves into this region, the yaw rate can accelerate rapidly. In order to avoid the onset of LTE in this downwind condition, it is imperative to maintain positive control of the yaw rate and devote full attention to flying the helicopter. 


Tail Rotor Vortex Ring State (210–330°)

Winds within this region cause a tail rotor vortex ring state to develop. The result is a nonuniform, unsteady flow into the tail rotor. The vortex ring state causes tail rotor thrust variations, which result in yaw deviations. The net effect of the unsteady flow is an oscillation of tail rotor thrust. Rapid and continuous pedal movements are necessary to compensate for the rapid changes in tail rotor thrust when hovering in a left crosswind. Maintaining a precise heading in this region is difficult, but this characteristic presents no significant problem unless corrective action is delayed. However, high pedal workload, lack of concentration, and overcontrolling can lead to LTE.


LTE at Altitude

At higher altitudes where the air is thinner, tail rotor thrust and efficiency are reduced. Because of the high-density altitude, powerplants may be much slower to respond to power changes. When operating at high altitudes and high gross weights, especially while hovering, the tail rotor thrust may not be sufficient to maintain directional control, and LTE can occur. In this case, the hovering ceiling is limited by tail rotor thrust and not necessarily power available. In these conditions, gross weights need to be reduced and/ or operations need to be limited to lower density altitudes. This may not be noted as criteria on the performance charts.


Main Drive Shaft or Clutch Failure

The main drive shaft, located between the engine and the main rotor transmission, provides engine power to the main rotor transmission. In some helicopters, particularly those with piston engines, a drive belt is used instead of a drive shaft. A failure of the drive shaft clutch or belt has the same effect as an engine failure because power is no longer provided to the main rotor and an autorotation must be initiated. There are a few differences, however, that need to be taken into consideration. If the drive shaft or belt breaks, the lack of any load on the engine results in an overspeed. In this case, the throttle must be closed in order to prevent any further damage. In some helicopters, the tail rotor drive system continues to be powered by the engine even if the main drive shaft breaks. In this case, when the engine unloads, a tail rotor overspeed can result. If this happens, close the throttle immediately and enter an autorotation. The pilot must be knowledgeable of the specific helicopter’s system and failure modes.


Hydraulic Failure

Many helicopters incorporate the use of hydraulic actuators to overcome high control forces. A hydraulic system consists of actuators, also called servos, on each flight control; a pump, which is usually driven by the main rotor transmission; and a reservoir to store the hydraulic fluid. A switch in the cockpit can turn the system off, although it is left on during normal conditions. A pressure indicator in the cockpit may be installed to monitor the system.


An impending hydraulic failure can be recognized by a grinding or howling noise from the pump or actuators, increased control forces and feedback, and limited control movement. The required corrective action is stated in detail in the RFM. In most cases, airspeed needs to be reduced in order to reduce control forces. The hydraulic switch and circuit breaker should be checked and recycled. If hydraulic power is not restored, make a shallow approach to a running or roll-on landing. This technique is used because it requires less control force and pilot workload. Additionally, the hydraulic system should be disabled by placing the switch in the off position. The reason for this is to prevent an inadvertent restoration of hydraulic power, which may lead to overcontrolling near the ground.


In those helicopters in which the control forces are so high that they cannot be moved without hydraulic assistance, two or more independent hydraulic systems are installed. Some helicopters use hydraulic accumulators to store pressure that can be used for a short time while in an emergency if the hydraulic pump fails. This gives enough time to land the helicopter with normal control.


Governor or Fuel Control Failure

Governors and fuel control units automatically adjust engine power to maintain rotor rpm when the collective pitch is changed. If the governor or fuel control unit fails, any change in collective pitch requires manual adjustment of the throttle to maintain correct rpm. In the event of a high side failure, the engine and rotor rpm tend to increase above the normal range due to the engine being commanded to put out too much power. If the rpm cannot be reduced and controlled with the throttle, close the throttle and enter an autorotation. If the failure is on the low side, the engine output is allowed to go below the collective and normal rpm may not be attainable, even if the throttle is manually controlled. In this case, the collective has to be lowered to maintain rotor rpm. A running or roll-on landing may be performed if the engine can maintain sufficient rotor rpm. If there is insufficient power, enter an autorotation. As stated previously in this chapter, before responding to any type of mechanical failure, pilots should confirm that rotor rpm is not responding to flight control inputs. If the rotor rpm can be maintained in the green operating range, the failure is in the instrument, and not mechanical.  


Abnormal Vibration

With the many rotating parts found in helicopters, some vibration is inherent. A pilot needs to understand the cause and effect of helicopter vibrations because abnormal vibrations cause premature component wear and may even result in structural failure. With experience, a pilot learns what vibrations are normal and those that are abnormal and can then decide whether continued flight is safe or not. Helicopter vibrations are categorized into low, medium, or high frequency.


Multiengine Emergency Operations

Single-Engine Failure

When one engine has failed, the helicopter can often maintain altitude and airspeed until a suitable landing site can be selected. Whether or not this is possible becomes a function of such combined variables as aircraft weight, density altitude, height above ground, airspeed, phase of flight, and single-engine capability. Environmental response time and control technique may be additional factors. Caution must be exercised to correctly identify the malfunctioning engine since there is no telltale yawing as occurs in most multiengine airplanes. Shutting down the wrong engine could be disastrous!


Even when flying multiengine powered helicopters, rotor rpm must be maintained at all costs, because fuel contamination has been documented as the cause for both engines failing in flight.


Dual-Engine Failure

The flight characteristics and the required crew member control responses after a dual-engine failure are similar to those during a normal power-on descent. Full control of the helicopter can be maintained during autorotational descent. In autorotation, as airspeed increases above 70–80 KIAS, the rate of descent and glide distance increase significantly. As airspeed decreases below approximately 60 KIAS, the rate of descent increases and glide distance decreases.


Lost Procedures

Pilots become lost while flying for a variety of reasons, such as disorientation, flying over unfamiliar territory, or visibility that is low enough to render familiar terrain unfamiliar. When a pilot becomes lost, the first order of business is to fly the aircraft; the second is to implement lost procedures. Keep in mind that the pilot workload will be high, and increased concentration will be necessary. If lost, always remember to look for the practically invisible hazards, such as wires, by searching for their support structures, such as poles or towers, which are almost always near roads. 


VFR Flight into Instrument Meteorological Conditions

Helicopters, unlike airplanes, generally operate under Visual Flight Rules (VFR) and require pilots to maintain aircraft control by visual cues. However, when unforecast weather leads to degraded visibility, the pilot may be at increased risk of Inadvertent flight into Instrument Meteorological Conditions (IIMC). During an IIMC encounter, the pilot may be unprepared for the loss of visual reference, resulting in a reduced ability to continue safe flight. IIMC is a lifethreatening emergency for any pilot. To capture these IIMC events, the Commercial Aviation Safety Team (CAST) and International Civil Aviation Organization (ICAO) Common Taxonomy Team (CICTT) categorizes this occurrence as Unintended flight in Instrument Meteorological Conditions (UIMC). This term is also recognized by the National Transportation Safety Board (NTSB) and Federal Aviation Administration (FAA). It is used to classify occurrences (accidents and incidents) at a high level to improve the capacity to focus on common safety issues and complete analysis of the data in support of safety initiatives.


The onset of IIMC may occur gradually or suddenly, has no simple procedural exit, and is unlike flight training by reference to while in Visual Meteorological Conditions (VMC). Most training helicopters are not equipped or certified to fly under Instrument Flight Rules (IFR). Therefore, General Aviation (GA) helicopter pilots may not have the benefit of flight in actual Instrument Meteorological Conditions (IMC) during their flight training. Helicopter pilots that encounter IIMC may experience physiological illusions which can lead to spatial disorientation and loss of aircraft control. Even with some instrument training, many available and accessible helicopters are not equipped with the proper augmented safety systems or autopilots, which would significantly aid in helicopter control during an IIMC emergency. The need to use outside visual references is natural for helicopter pilots because much of their flight training is based upon visual cues, not on flight instruments. This primacy can only be overcome through significant instrument training. Additionally, instrument flight may be intimidating to some and too costly for others. As a result, many helicopter pilots choose not to seek an instrument rating.


Emergency Equipment and Survival Gear

Both Canada and Alaska require pilots to carry survival gear. Always carry survival gear when flying over rugged and desolate terrain. The items suggested in Figure are both weather and terrain dependent. The pilot also needs to consider how much storage space the helicopter has and how the equipment being carried affects the overall weight and balance of the helicopter. 

You may like these posts