Helicopter: Environmental Systems
Heating and cooling the helicopter cabin can be accomplished in different ways. The simplest form of cooling is by ram air. Air ducts in the front or sides of the helicopter are opened or closed by the pilot to let ram air into the cabin. This system is limited as it requires forward airspeed to provide airflow and also depends on the temperature of the outside air. Air conditioning provides better cooling, but it is more complex and weighs more than a ram air system.
One of the simplest methods of cooling a helicopter is to remove the doors allowing air to flow through the cockpit and engine compartments. Care must be taken to store the doors properly, whether in a designed door-holding rack in a hangar, or if it is necessary to carry them on the flight, in the helicopter. When storing the doors, care must be taken to not scratch the windows. Special attention should be paid to ensuring that all seat belt cushions and any other loose items are stored away to prevent ingestion into the main or tail rotor. When reattaching the doors, proper care must be taken to ensure that they are fully secured and closed.
Air conditioners or heat exchanges can be fitted to the helicopter as well. They operate by drawing bleed air from the compressor, passing it through the heart exchanger and then releasing it into the cabin. As the compressed air is released, the expansion absorbs heat and cools the cabin. The disadvantage of this type of system is that power is required to compress the air or gas for the cooling function, thus robbing the engine of some of its capability. Some systems are restricted from use during takeoff and landings.
Piston-powered helicopters use a heat exchanger shroud around the exhaust manifold to provide cabin heat. Outside air is piped to the shroud and the hot exhaust manifold heats the air, which is then blown into the cockpit. This warm air is heated by the exhaust manifold but is not exhaust gas. Turbine helicopters use a bleed air system for heat. Bleed air is hot, compressed, discharge air from the engine compressor. Hot air is ducted from the compressor to the bleed air heater assembly where it is combined with ambient air through and induction port mounted to the fuselage. The amount of heat delivered to the helicopter cabin is regulated by a pilotcontrolled bleed air mixing valve.