✈️Website Table of Contents🚁

LOG IN NOW....

πŸ”΅✈️ Aircraft Engine: Turbine Engine Lubrication Systems 🚁

There are many requirements for turbine engine lubricating oils. Due to the absence of reciprocating motion and the presence of ball and roller bearings (antifriction bearings), the turbine engine uses a less viscous lubricant. Gas turbine engine oil must have a high viscosity for good load-carrying ability but must also be of sufficiently low viscosity to provide good flowability. It must also be of low volatility to prevent loss by evaporation at the high altitudes at which the engines operate. In addition, the oil should not foam and should be essentially nondestructive to natural or synthetic rubber seals in the lubricating system. Also, with high-speed antifriction bearings, the formation of carbons or varnishes must be held to a minimum. Synthetic oil for turbine engines are usually supplied in sealed one-quart cans.


Aircraft Engine: Turbine Engine Lubrication Systems


The many requirements for lubricating oils are met in the synthetic oils developed specifically for turbine engines. Synthetic oil has two principal advantages over petroleum oil. It has a lower tendency to deposit lacquer and coke (solids left after solvents have been evaporated) because it does not evaporate the solvents from the oil at high temperature. Oil grades used in some turbine engines normally contain thermal and oxidation preventives, load-carrying additives, and substances that lower the pour point in addition to synthetic chemical-base materials. MIL-L-7808, which is a military specification for turbine oil, was type I turbine oil. Turbine synthetic oil has a viscosity of around 5 to 5.5 centistokes at 210ΒΊ F that is approved against the military specification MIL-PRF-23699F. This oil is referred to as type II turbine oil. Most turbine oils meet this type II specification and are made with the following characteristics: 

1. Vapor phase deposits: carbon deposits formed from oil mist and vapor contact with hot engine surfaces. 

2. Load-carrying ability: provides for heavy loads on the bearing systems of turbine engines. 

3. Cleanliness: minimum formation of sludge deposits during severe operation.

4. Bulk stability: resistance to physical or chemical change resulting from oxidation. Permits long periods of serve operation without significant increase in viscosity or total acidity, the main indicators of oxidation.

5. Compatibility: most turbine oil is compatible with other oils that meet the same military specification. But, most engine manufacturers do not recommend the indiscriminate mixing of approved oil brands and this is not a generally accepted practice. 


Turbine Oil Health and Safety Precautions 

Under normal conditions, the use of turbine oil presents a low health risk for humans. Although each person reacts somewhat differently to exposure, contact with liquids, vapors, and mist of turbine oil should be minimized. Information on established limits on exposure to turbine oil can generally be found in the material safety data sheets (MSDS). Prolonged breathing of hydrocarbon vapor concentrations in excess of the prescribed limits may result in lightheadedness, dizziness, and nausea. If turbine oil is ingested, call a doctor immediately; identify the product and how much was ingested. Because of the risk of ingestion, petroleum products should never be siphoned by mouth.


Prolonged or repeated contact of turbine oil with the skin can cause irritation and dermatitis. In case of skin contact, wash the skin thoroughly with soap and warm water. Promptly remove oil-soaked clothing and wash. If turbine oil contacts the eyes, flush the eyes with fresh water until the irritation subsides. Protective clothing, gloves, and eye protection should be used when handling turbine oil.


Aircraft Engine: Turbine Engine Lubrication Systems


During operation, it is possible for the oil to be subjected to very high temperatures that can break down the oil and produce a product of unknown toxicity. If this happens, all precautions to avoid explosive should be taken. It can also have a tendency to blister, discolor, or remove paint whenever it is spilled. Painted surfaces should be wiped clean with a petroleum solvent after spillage.


Spectrometric Oil Analysis Program 

The Spectrometric Oil Analysis Program allows an oil sample to be analyzed and searched for the presence of minute metallic elements. Due to oil circulation throughout an aircraft engine, every lubricant that is in service contains microscopic particles of metallic elements called wear metals. As the engine operates over time, the oil picks up very small particles that stay suspended in the oil. Oil analysis programs identify and measure these particles in parts per million (PPM) by weight. The analyzed elements are grouped into categories, such as wear metals and additives, and their measurement in PPM provides data that expert analysts can use as one of many tools to determine the engine’s condition. An increase in PPM of certain materials can be a sign of component wear or impending failure of the engine. When you take a sample, note and record the amount of wear metals. If the amount of wear metals increases beyond a normal rate, then the operator can be notified quickly so repair or a recommend specific maintenance procedure or inspection can be ordered. 


Oil analysis increases safety by identifying an engine problem before engine failure. It also saves money by finding engine problems before they become large problems or complete engine failure. This procedure can be used for both turbine and reciprocating engines.


Typical Wear Metals and Additives 

The following examples of wear metals are associated with areas of the engine that could be lead to their source. Identifying the metal can help identify the engine components that are wearing or failing.  • Iron: wear from rings, shafts, gears, valve train, cylinder walls, and pistons in some engines.  • Chromium: primary sources are chromed parts (such as rings, liners, etc.) and some coolant additives.  • Nickel: secondary indicator of wear from certain types of bearings, shafts, valves, and valve guides.  • Aluminum: indicates wear of pistons, rod bearings, and certain types of bushings.  • Lead: mostly from tetraethyl lead contamination.  • Copper: wear from bearings, rocker arm bushings, wrist pin bushings, thrust washers, and other bronze or brass parts, and oil additive or antiseize compound.  • Tin: wear from bearings. • Silver: wear of bearings that contain silver and, in some instances, a secondary indicator of oil cooler problems.  • Titanium: alloy in high-quality steel for gears and bearings.  • Molybdenum: gear or ring wear and used as an additive in some oils.  • Phosphorous: antirust agents, spark plugs, and combustion chamber deposits. 


Aircraft Engine: Turbine Engine Lubrication Systems

Lubrication Systems

Both wet- and dry-sump lubrication systems are used in gas turbine engines. Wet-sump engines store the lubricating oil in the engine proper, while dry-sump engines utilize an external tank mounted on the engine or somewhere in the aircraft structure near the engine, similar to reciprocating piston engines mentioned earlier.


Turbine engine’s oil systems can also be classified as a pressure relief system that maintains a somewhat constant pressure: the full flow type of system, in which the pressure varies with engine speed, and the total loss system, used in engines that are for short duration operation (target drones, missiles, etc.). The most widely used system is the pressure relief system with the full flow used mostly on large fantype engines. One of the main functions of the oil system in turbine engines is cooling the bearings by carrying the heat away from the bearing by circulating oil around the bearing.


The exhaust turbine bearing is the most critical lubricating point in a gas turbine engine because of the high temperature normally present. In some engines, air cooling is used in addition to oil cooling the bearing, which supports the turbine. Air cooling, referred to as secondary air flow, is cooling air provide by bleed air from the early stages of the compressor. This internal air flow has many uses on the inside of the engine. It is used to cool turbine disk, vanes, and blades. Also, some turbine wheels may have bleed air flowing over the turbine disk, which reduces heat radiation to the bearing surface. Bearing cavities sometimes use compressor air to aid in cooling the turbine bearing. This bleed air, as it is called, is usually bled off a compressor stage at a point where air has enough pressure but has not yet become too warm (as the air is compressed, it becomes heated). 


The use of cooling air substantially reduces the quantity of oil necessary to provide adequate cooling of the bearings. Since cooling is a major function of the oil in turbine engines, the lubricating oil for bearing cooling normally requires an oil cooler. When an oil cooler is required, usually a greater quantity of oil is necessary to provide for circulation between the cooler and engine. To ensure proper temperature, oil is routed through either air-cooled and/or fuel-cooled oil coolers. This system is used to also heat (regulate) the fuel to prevent ice in the fuel. 


Aircraft Engine: Turbine Engine Lubrication Systems


Turbine Lubrication System Components 

The following component descriptions include most found in the various turbine lubrication systems. However, since engine oil systems vary somewhat according to engine model and manufacturer, not all of these components are necessarily found in any one system. 


Oil Tank 

Although the dry-sump systems use an oil tank that contains most of the oil supply, a small sump is usually included on the engine to hold a small supply of oil. It usually contains the oil pump, the scavenge and pressure inlet strainers, scavenge return connection, pressure outlet ports, an oil filter, and mounting bosses for the oil pressure gauge and temperature bulb connections.


A view of a typical oil tank is shown in Figure. It is designed to furnish a constant supply of oil to the engine during any aircraft attitude. This is done by a swivel outlet assembly mounted inside the tank, a horizontal baffle mounted in the center of the tank, two flapper check valves mounted on the baffle, and a positive vent system.


The swivel outlet fitting is controlled by a weighted end that is free to swing below the baffle. The flapper valves in the baffle are normally open; they close only when the oil in the bottom of the tank tends to rush to the top of the tank during decelerations. This traps the oil in the bottom of the tank where it is picked up by the swivel fitting. A sump drain is located in the bottom of the tank. The vent system inside the tank is so arranged that the airspace is vented at all times even though oil may be forced to the top of the tank by deceleration of the aircraft.


All oil tanks are provided with expansion space. This allows expansion of the oil after heat is absorbed from the bearings and gears and after the oil foams as a result of circulating through the system. Some tanks also incorporate a deaerator tray for separating air from the oil returned to the top of the tank by the scavenger system. Usually these deaerators are the can type in which oil enters at a tangent. The air released is carried out through the vent system in the top of the tank.


In most oil tanks, a pressure buildup is desired within the tank to ensure a positive flow of oil to the oil pump inlet. This pressure buildup is made possible by running the vent line through an adjustable check relief valve. The check relief valve is usually set to relieve at about 4 psi, keeping positive pressure on the oil pump inlet. If the air temperature is abnormally low, the oil may be changed to a lighter grade. Some engines may provide for the installation of an immersion-type oil heater.


Aircraft Engine: Turbine Engine Lubrication Systems


Oil Pump 

The oil pump is designed to supply oil under pressure to the parts of the engine that require lubrication, then circulate the oil through coolers as needed, and return the oil to the oil tank. Many oil pumps consist of not only a pressure supply element, but also scavenge elements, such as in a dry-sump system. However, there are some oil pumps that serve a single function; that is, they either supply or scavenge the oil. These pump elements can be located separate from each other and driven by different shafts from the engine. The numbers of pumping elements (two gears that pump oil), pressure and scavenge, depend largely on the type and model of the engine. Several scavenge oil pump elements can be used to accommodate the larger capacity of oil and air mix. The scavenge elements have a greater pumping capacity than the pressure element to prevent oil from collecting in the bearing sumps of the engine.


The pumps may be one of several types, each type having certain advantages and limitations. The two most common oil pumps are the gear and gerotor, with the gear-type being the most commonly used. Each of these pumps has several possible configurations.


The gear-type oil pump has only two elements: one for pressure oil and one for scavenging. However, some types of pumps may have several elements: one or more elements for pressure and two or more for scavenging. The clearances between the gear teeth and the sides of the pump wall and plate are critical to maintain the correct output of the pump.


A regulating (relief) valve in the discharge side of the pump limits the output pressure of the pump by bypassing oil to the pump inlet when the outlet pressure exceeds a predetermined limit. The regulating valve can be adjusted, if needed, to bring the oil pressure within limits. Also shown is the shaft shear section that causes the shaft to shear if the pump gears should seize up and not turn.  


The gerotor pump, like the gear pump, usually contains a single element for oil pressure and several elements for scavenging oil. Each of the elements, pressure and scavenge, is almost identical in shape; however, the capacity of the elements can be controlled by varying the size of the gerotor elements. For example, the pressure element may have a pumping capacity of 3.1 gallon per minute (gpm) as compared to 4.25 gpm capacity for the scavenge elements. Consequently, the pressure element is smaller since the elements are all driven by a common shaft. The pressure is determined by engine rpm with a minimum pressure at idling speed and maximum pressure at intermediate and maximum engine speeds. 


A typical set of gerotor pumping elements is shown in Figure. Each set of gerotors is separated by a steel plate, making each set an individual pumping unit consisting of an inner and an outer element. The small star-shaped inner element has external lobes that fit within and are matched with the outer element that has internal lobes. The small element fits on and is keyed to the pump shaft and acts as a drive for the outer free-turning element. The outer element fits within a steel plate having an eccentric bore. In one engine model, the oil pump has four elements: one for oil feed and three for scavenge. In some other models, pumps have six elements: one for feed and five for scavenge. In each case, the oil flows as long as the engine shaft is turning.


Turbine Oil Filters 

Filters are an important part of the lubrication system because they remove foreign particles that may be in the oil. This is particularly important in gas turbines as very high engine speeds are attained; the antifriction types of ball and roller bearings would become damaged quite rapidly if lubricated with contaminated oil. Also, there are usually numerous drilled or core passages leading to various points of lubrication. Since these passages are usually rather small, they are easily clogged.

Aircraft Engine: Turbine Engine Lubrication Systems


There are several types and locations of filters used for filtering the turbine lubricating oil. The filtering elements come in a variety of configurations and mesh sizes. Mesh sizes are measured in microns, which is a linear measurement equal to one millionth of a meter (a very small opening).


A main oil strainer filter element is shown in Figure. The filtering element interior is made of varying materials including paper and metal mesh. Oil normally flows through the filter element from the outside into the filter body. One type of oil filter uses a replaceable laminated paper element, while others use a very fine stainless steel metal mesh of about 25–35 microns.   


Most filters are located close to the pressure pump and consist of a filter body or housing, filter element, a bypass valve, and a check valve. The filter bypass valve prevents the oil flow from being stopped if the filter element becomes clogged. The bypass valve opens whenever a certain pressure is reached. If this occurs, the filtering action is lost, allowing unfiltered oil to be pumped to the bearings. However, this prevents the bearings from receiving no oil at all. In the bypass mode, many engines have a mechanical indicator that pops out to indicate the filter is in the bypass mode. This indication is visual and can only be seen by inspecting the engine directly. An antidrain check valve is incorporated into the assembly to prevent the oil in the tank from draining down into the engine sumps when the engine is not operating. This check valve is normally spring loaded closed with 4 to 6 psi needed to open it.


The filters generally discussed are used as main oil filters; that is, they strain the oil as it leaves the pump before being piped to the various points of lubrication. In addition to the main oil filters, there are also secondary filters located throughout the system for various purposes. For instance, there may be a finger screen filter that is sometimes used for straining scavenged oil. These screens tend to be large mesh screens that trap larger contaminants. Also, there are fine-mesh screens called last chance filters for straining the oil just before it passes from the spray nozzles onto the bearing surfaces. These filters are located at each bearing and help screen out contaminants that could plug the oil spray nozzle.


Oil Pressure Regulating Valve 

Most turbine engine oil systems are the pressure regulating type system that keeps the pressure fairly constant. An oil pressure regulating valve is included in the oil system on the pressure side of the pressure pump. A regulating valve system controls the systems pressure to a limited pressure within the system. It is more of a regulating valve than a relief valve because it keeps the pressure in the system within certain limits other than only opening when the absolute maximum pressure of the system is exceeded.


The regulating valve Figure has a valve held against a seat by a spring. By adjusting the tension (increase) on the spring, you change the pressure at which the valve opens, and you also increase the system pressure. A screw pressing on the spring adjusts the tension on the valve and the system pressure.


Oil Pressure Relief Valve 

Some large turbofan oil systems do not have a regulating valve. The system pressure varies with engine rpm and pump speed. There is a wide range of pressure in this system. A relief valve is used to relieve pressure only if it exceeds the maximum limit for the system. This true relief valve system is preset to relieve pressure and bypass the oil back to the inlet side of the oil pump whenever the pressure exceeds the maximum preset system limit. This relief valve is especially important when oil coolers are incorporated in the system since the coolers are easily ruptured because of their thin-wall construction. Under normal operation, it should never open. 


Oil Jets 

Oil jets (or nozzles) are located in the pressure lines adjacent to, or within, the bearing compartments and rotor shaft couplings. The oil from these nozzles is delivered in the form of an atomized spray. Some engines use an air-oil mist spray that is produced by tapping high-pressure bleed air from the compressor to the oil nozzle outlet. This method is considered adequate for ball and roller bearings; however, the solid oil spray method is considered the better of the two methods.


The oil jets are easily clogged because of the small orifice in their tips; consequently, the oil must be free of any foreign particles. If the last-chance filters in the oil jets should become clogged, bearing failure usually results since nozzles are not accessible for cleaning except during engine maintenance. To prevent damage from clogged oil jets, main oil filters are checked frequently for contamination.

Aircraft Engine: Turbine Engine Lubrication Systems


Lubrication System Instrumentation 

Gauge connection provisions are incorporated in the oil system for oil pressure, oil quantity, low oil pressure, oil filter differential pressure switch, and oil temperature. The oil pressure gauge measures the pressure of the lubricant as it leaves the pump and enters the pressure system. The oil pressure transmitter connection is located in the pressure line between the pump and the various points of lubrication. An electronic sensor is placed to send a signal to the Full Authority Digital Engine Control (FADEC) control unit and through the Engine Indicating and Crew Alerting System (EICAS) computers, and on to the displays in the flight deck. The tank quantity transmitter information is sent to the EICAS computers. The low oil pressure switch alerts the crew if the oil pressure falls below a certain pressure during engine operation. The differential oil pressure switch alerts the flight crew of an impending oil filter bypass because of a clogged filter. A message is sent to the display in the upper EICAS display in the flight deck as can be seen in Figure. Oil temperature can be sensed at one or more points in the engine’s oil flow path. The signal is sent to the FADEC/EICAS computer and is displayed on the lower EICAS display.


Lubrication System Breather Systems (Vents) 

Breather subsystems are used to remove excess air from the bearing cavities and return the air to the oil tank where it is separated from any oil mixed in the vapor of air and oil by the deaerator. Then, the air is vented overboard and back to the atmosphere. All engine bearing compartments, oil tanks, and accessory cases are vented together so the pressure in the system remains the same.


The vent in an oil tank keeps the pressure within the tank from rising above or falling below that of the outside atmosphere. However, the vent may be routed through a check relief valve that is preset to maintain a slight (approximately 4 psi) pressure on the oil to assure a positive flow to the oil pump inlet.


In the accessory case, the vent (or breather) is a screenprotected opening that allows accumulated air pressure within the accessory case to escape to the atmosphere. The scavenged oil carries air into the accessory case and this air must be vented. Otherwise, the pressure buildup within the accessory case would stop the flow of oil draining from the bearing, forcing this oil past the bearing oil seals and into the compressor housing. If in enough quantity, oil leakage could cause burning and seal and bearing malfunction. The screened breathers are usually located in the front center of the accessory case to prevent oil leakage through the breather when the aircraft is in unusual flight attitudes. Some breathers may have a baffle to prevent oil leakage during flight maneuvers. A vent that leads directly to the bearing compartment may be used in some engines. This vent equalizes pressure around the bearing surface so that the lower pressure at the first compressor stage does not cause oil to be forced past the bearing rear oil seal into the compressor.


Lubrication System Check Valve 

Check valves are sometimes installed in the oil supply lines of dry-sump oil systems to prevent reservoir oil from seeping (by gravity) through the oil pump elements and high-pressure lines into the engine after shutdown. Check valves, by stopping flow in an opposite direction, prevent accumulations of undue amounts of oil in the accessory gearbox, compressor rear housing, and combustion chamber. Such accumulations could cause excessive loading of the accessory drive gears during starts, contamination of the cabin pressurization air, or internal oil fires. The check valves are usually the spring-loaded ball-and-socket type constructed for free flow of pressure oil. The pressure required to open these valves varies, but the valves generally require from 2 to 5 psi to permit oil to flow to the bearings.


Lubrication System Thermostatic Bypass Valves 

Thermostatic bypass valves are included in oil systems using an oil cooler. Although these valves may be called different names, their purpose is always to maintain proper oil temperature by varying the proportion of the total oil flow passing through the oil cooler. A cutaway view of a typical thermostatic bypass valve is shown in Figure. This valve consists of a valve body, having two inlet ports and one outlet port, and a spring-loaded thermostatic element valve. The valve is spring loaded because the pressure drop through the oil cooler could become too great due to denting or clogging of the cooler tubing. In such a case, the valve opens, bypassing the oil around the cooler.


Air Oil Coolers 

Two basic types of oil coolers in general use are the air-cooled and the fuel-cooled. Air oil coolers are used in the lubricating systems of some turbine engines to reduce the temperature of the oil to a degree suitable for recirculation through the system. The air-cooled oil cooler is normally installed at the forward end of the engine. It is similar in construction and operation to the air-cooled cooler used on reciprocating engines. An air oil cooler is usually included in a dry-sump oil system. This cooler may be air-cooled or fuel-cooled and many engines use both. Dry-sump lubrication systems require coolers for several reasons. First, air cooling of bearings by using compressor bleed-air is not sufficient to cool the turbine bearing cavities because of the heat present in area of the turbine bearings. Second, the large turbofan engines normally require a greater number of bearings, which means that more heat is transferred to the oil. Consequently, the oil coolers are the only means of dissipating the oil heat.


Fuel Oil Coolers 

The fuel-cooled oil cooler acts as a fuel oil heat exchanger in that the fuel cools the hot oil and the oil heats the fuel for combustion. Fuel flowing to the engine must pass through the heat exchanger; however, there is a thermostatic valve that controls the oil flow, and the oil may bypass the cooler if no cooling is needed. The fuel/oil heat exchanger consists of a series of joined tubes with an inlet and outlet port. The oil enters the inlet port, moves around the fuel tubes, and goes out the oil outlet port.


Deoiler 

The deoiler removes the oil from the breather air. The breather air goes into an impeller that turns in the deoiler housing. Centrifugal force drives the oil towards the outer wall of the impeller. Then, the oil drains from the deoiler into a sump or oil tank. Because the air is much lighter than the oil, it goes through the center of the impeller and is vented overboard.


Magnetic Chip Detectors 

Magnetic chip detectors are used in the oil system to detect and catch ferrous (magnetic) particles present in the oil. Scavenge oil generally flows past chip detectors so any magnetic particles are attracted and stick to the chip detector. Chip detectors are placed in several locations but generally are in the scavenge lines for each scavenge pump, oil tank, and in the oil sumps. Some engines have several detectors to one detector. During maintenance, the chip detectors are removed from the engine and inspected for metal; if none is found, the detector is cleaned, replaced, and safety wired. If metal is found on a chip detector, an investigation should be made to find the source of the metal on the chip.