✈️Website Table of Contents🚁

LOG IN NOW....

πŸ”΅✈️ Aviation: Fire Detection System Maintenance 🚁

Fire detector sensing elements are located in many highactivity areas around aircraft engines. Their location, together with their small size, increases the chance of damage to the sensing elements during maintenance. An inspection and maintenance program for all types of continuous-loop systems should include the following visual checks. These procedures are examples and should not be used to replace the applicable manufacturer’s instructions.


Sensing elements of a continuous-loop system should be inspected for the following: 


1. Cracked or broken sections caused by crushing or squeezing between inspection plates, cowl panels, or engine components. 


2. Abrasion caused by rubbing of the element on cowling, accessories, or structural members. 


3. Pieces of safety wire or other metal particles that may short the spot-detector terminals. 


4. Condition of rubber grommets in mounting clamps, which may be softened from exposure to oils or hardened from excessive heat. 


5. Dents and kinks in sensing element sections. Limits on the element diameter, acceptable dents and kinks, and degree of smoothness of tubing contour are specified by the manufacturer. No attempt should be made to straighten any acceptable dent or kink, since stresses may be set up that could cause tubing failure.


6. Nuts at the end of the sensing elements should be inspected for tightness and the presence of a safety wire. Loose nuts should be retorqued to the value specified by the manufacturer’s instructions. Some types of sensing element connection joints require the use of copper crush gaskets, which should be replaced any time a connection is separated.


7. If shielded flexible leads are used, they should be inspected for fraying of the outer braid. The braided sheath is composed of many fine metal strands woven into a protective covering surrounding the inner insulated wire. Continuous bending of the cable or rough treatment can break these fine wires, especially those near the connectors.


8. Sensing element routing and clamping should be inspected carefully. Long, unsupported sections may permit excessive vibration that can cause breakage. The distance between clamps on straight runs, usually about 8–10 inches, is specified by the manufacturer. At end connectors, the first support clamp is usually located about four to six inches from the end connector fittings. In most cases, a straight run of one inch is maintained from all connectors before a bend is started, and an optimum bend radius of three inches is normally applied.


9. Interference between a cowl brace and a sensing element can cause rubbing. This interference may cause wear and short the sensing element.


10. Grommets should be installed on the sensing element so that both ends are centered on its clamp. The split end of the grommet should face the outside of the nearest bend. Clamps and grommets should fit the element snugly.


Aviation: Fire Detection System Maintenance


Fire Detection System Troubleshooting 

The following troubleshooting procedures represent the most common difficulties encountered in engine fire detection systems: 


1. Intermittent alarms are most often caused by an intermittent short in the detector system wiring. Such shorts may be caused by a loose wire that occasionally touches a nearby terminal, a frayed wire brushing against a structure, or a sensing element rubbing against a structural member long enough to wear through the insulation. Intermittent faults often can be located by moving wires to re-create the short.


2. Fire alarms and warning lights can occur when no engine fire or overheat condition exists. Such false alarms can be most easily located by disconnecting the engine sensing loop connections from the control unit. If the false alarm ceases when the engine sensing loop is disconnected, the fault is in the disconnected sensing loop, which should be examined for areas that have been bent into contact with hot parts of the engine. If no bent element can be found, the shorted section can be located by isolating the connecting elements consecutively around the entire loop.


3. Kinks and sharp bends in the sensing element can cause an internal wire to short intermittently to the outer tubing. The fault can be located by checking the sensing element with an ohm meter while tapping the element in the suspected areas to produce the short.


4. Moisture in the detection system seldom causes a false fire alarm. If, however, moisture does cause an alarm, the warning persists until the contamination is removed or boils away, and the resistance of the loop returns to its normal value.


5. Failure to obtain an alarm signal when the test switch is actuated may be caused by a defective test switch or control unit, the lack of electrical power, inoperative indicator light, or an opening in the sensing element or connecting wiring. When the test switch fails to provide an alarm, the continuity of a two-wire sensing loop can be determined by opening the loop and measuring the resistance. In a single-wire, continuousloop system, the center conductor should be grounded. 

Aviation: Fire Detection System Maintenance


Fire Extinguisher System Maintenance Practices

Regular maintenance of fire extinguisher systems typically includes such items as the inspection and servicing of fire extinguisher bottles (containers), removal and reinstallation of cartridge and discharge valves, testing of discharge tubing for leakage, and electrical wiring continuity tests. The following paragraphs contain details of some of the most typical maintenance procedures.


Fire extinguisher containers are checked periodically to determine that the pressure is between the prescribed minimum and maximum limits. Changes of pressure with ambient temperatures must also fall within prescribed limits. The graph shown in Figure is typical of the pressure temperature curve graphs that provide maximum and minimum gauge readings. If the pressure does not fall within the graph limits, the extinguisher container is replaced. The service life of fire extinguisher discharge cartridges is calculated from the manufacturer’s date stamp, which is usually placed on the face of the cartridge. The cartridge service life recommended by the manufacturer is usually in terms of years. Cartridges are available with a service life of 5 years or more. To determine the unexpired service life of a discharge cartridge, it is usually necessary to remove the electrical leads and discharge line from the plug body, which can then be removed from the extinguisher container.  


Be careful when replacing cartridge and discharge valves. Most new extinguisher containers are supplied with their cartridge and discharge valve disassembled. Before installation on the aircraft, properly assemble the cartridge in the discharge valve and connect the valve to the container, usually by means of a swivel nut that tightens against a packing ring gasket.


If a cartridge is removed from a discharge valve for any reason, it should not be used in another discharge valve assembly, since the distance the contact point protrudes may vary with each unit. Thus, continuity might not exist if a used plug that had been indented with a long contact point were installed in a discharge valve with a shorter contact point.


The preceding material in this chapter is general in nature, addressing the principles involved and general procedures to be followed. When actually performing maintenance, always refer to the applicable maintenance manuals and other related publications pertaining to a particular aircraft.