✈️Website Table of Contents🚁

LOG IN NOW....

​πŸ”΅✈️ Important features of the Theory of Aircraft Flight 🚁​

Aircraft Theory of Flight 


Before a technician can consider performing maintenance on an aircraft, it is necessary to understand the pieces that make up the aircraft. Names like fuselage, empennage, wing, and so many others, come into play when describing what an airplane is and how it operates. For helicopters, names like main rotor, anti-torque rotor, and autorotation come to mind as a small portion of what needs to be understood about rotorcraft. The study of physics, which includes basic aerodynamics, is a necessary part of understanding why aircraft operate the way they do.


Four Forces of Flight 

During flight, there are four forces acting on an airplane. These forces are lift, weight, thrust, and drag.  Lift is the upward force created by the wing, weight is the pull of gravity on the mass, thrust is the force created by the airplane’s propeller or turbine engine, and drag is the friction caused by the air flowing around the airplane. 


All four of these forces are measured in pounds. Any time the forces are not in balance, something about the airplane’s condition is changing. The possibilities are as follows:


1. When an airplane is accelerating, it has more thrust than drag. 

2. When an airplane is decelerating, it has less thrust than drag. 

3. When an airplane is at a constant velocity, thrust and drag are equal. 

4. When an airplane is climbing, it has more lift than weight. 

5. When an airplane is descending, it has more weight than lift. 

6. When an airplane is at a constant altitude, lift and weight are equal.  


Bernoulli’s Principle and Subsonic Flow 

The basic concept of subsonic airflow and the resulting pressure differentials was discovered by Daniel Bernoulli, a Swiss physicist. Bernoulli’s principle, as we refer to it today, states that “as the velocity of a fluid increases, the static pressure of that fluid will decrease, provided there is no energy added or energy taken away.” A direct application of Bernoulli’s principle is the study of air as it flows through either a converging or a diverging passage, and to relate the findings to some aviation concepts.


A converging shape is one whose cross-sectional area gets progressively smaller from entry to exit. A diverging shape is just the opposite, with the cross-sectional area getting larger from entry to exit. Figure shows a converging shaped duct, with the air entering on the left at subsonic velocity and exiting on the right. Notice that the air exits at an increased velocity and a decreased static pressure when looking at the pressure and velocity gauges, and the indicated velocity and pressure. The unit leaving must increase its velocity as it flows into a smaller space, because a unit of air must exit the duct when another unit enters.  


In a diverging duct, just the opposite would happen. From the entry point to the exit point, the duct is spreading out and the area is getting larger. With the increase in cross-sectional area, the velocity of the air decreases and the static pressure increases. The total energy in the air has not changed. What has been lost in velocity, which is kinetic energy, is gained in static pressure, which is potential energy. 


In the converging part of the venturi, velocity would increase and static pressure would decrease. The same thing would happen to the air flowing around the wing, with the velocity over the top increasing and static pressure decreasing.


Some of the air goes over the top of the wing and some travels along the bottom. The air going over the top, because of the curvature, has farther to travel. With a greater distance to travel, the air going over the top must move at a greater velocity. The higher velocity on the top causes the static pressure on the top to be less than it is on the bottom, and this difference in static pressures is what creates lift.


Four forces acting on an airplane.


Lift and Newton’s Third Law 

Newton’s third law identifies that for every force there is an equal and opposite reacting force. In addition to Bernoulli’s principle, Newton’s third law can also be used to explain the lift being created by a wing. As the air travels around a wing and leaves the trailing edge, the air is forced to move in a downward direction. Since a force is required to make something change direction, there must be an equal and opposite reacting force. In this case, the reacting force is what we call lift. In order to calculate lift based on Newton’s third law,


Newton’s second law and the formula “Force = Mass × Acceleration” would be used. The mass would be the weight of air flowing over the wing every second, and the acceleration would be the change in velocity the wing imparts to the air.


The lift on the wing as described by Bernoulli’s principle, and lift on the wing as described by Newton’s third law, is not separate or independent of each other. They are just two different ways to describe the same thing, namely the lift on a wing.


Airfoils 

An airfoil is any device that creates a force, based on Bernoulli’s principles or Newton’s laws, when air is caused to flow over the surface of the device. An airfoil can be the wing of an airplane, the blade of a propeller, the rotor blade of a helicopter, or the fan blade of a turbofan engine. The wing of an airplane moves through the air because the airplane is in motion, and generates lift by the process previously described. By comparison, a propeller blade, helicopter rotor blade, or turbofan engine fan blade rotates through the air. These rotating blades could be referred to as rotating wings, as is common with helicopters when they are called rotary wing aircraft. The rotating wing can be viewed as a device that creates lift, or just as correctly, it can be viewed as a device that creates thrust. 


Camber 

The camber of a wing is the curvature which is present on top and bottom surfaces. The camber on the top is much more pronounced, unless the wing is a symmetrical airfoil, which has the same camber top and bottom. The bottom of the wing, more often than not, is relatively flat. The increased camber on top is what causes the velocity of the air to increase and the static pressure to decrease. The bottom of the wing has less velocity and more static pressure, which is why the wing generates lift.


Chord Line 

The chord line is an imaginary straight line running from the wing’s leading edge to its trailing edge. The angle between the chord line and the longitudinal axis of the airplane is known as the angle of incidence.  


RelativeWind 

The relative wind is a relationship between the direction of airflow and the aircraft wing. In normal flight circumstances, the relative wind is the opposite direction of the aircraft flight path. 


• If the flight path is forward then the relative wind is backward. 

• If the flight path is forward and upward, then the relative wind is backward and downward. 

• If the flight path is forward and downward, then the relative wind is backward and upward. 


Therefore, the relative wind is parallel to the flight path, and travels in the opposite direction.


Angle ofAttack 

The angle between the chord line and the relative wind is the angle of attack. As the angle of attack increases, the lift on the wing increases. If the angle of attack becomes too great, the airflow can separate from the wing and the lift will be destroyed. When this occurs, a condition known as a stall takes place.


There are a number of different shapes, known as planforms that a wing can have. A wing in the shape of a rectangle is very common on small general aviation airplanes. An elliptical shape or tapered wing can also be used, but these do not have as desirable a stall characteristic. For airplanes that operate at high subsonic speeds, sweptback wings are common, and for supersonic flight, a delta shape might be used.


The aspect ratio of a wing is the relationship between its span, or a wingtip to wingtip measurement, and the chord of the wing. If a wing has a long span and a very narrow chord, it is said to have a high aspect ratio. A higher aspect ratio produces less drag for a given flight speed, and is typically found on glider type aircraft.


The angle of incidence of a wing is the angle formed by the intersection of the wing chord line and the horizontal plane passing through the longitudinal axis of the aircraft. Many airplanes are designed with a greater angle of incidence at the root of the wing than at the tip, and this is referred to as washout. This feature causes the inboard part of the wing to stall before the outboard part, which helps maintain aileron control during the initial stages of a wing stall. 


Boundary Layer Airflow 

The boundary layer is a very thin layer of air lying over the surface of the wing and, for that matter, all other surfaces of the airplane. Because air has viscosity, this layer of air tends to adhere to the wing. As the wing moves forward through the air the boundary layer at first flows smoothly over the streamlined shape of the airfoil. Here the flow is called the laminar layer.  


As the boundary layer approaches the center of the wing, it begins to lose speed due to skin friction and it becomes thicker and turbulent. Here it is called the turbulent layer. The point at which the boundary layer changes from laminar to turbulent is called the transition point. Where the boundary layer becomes turbulent, drag due to skin friction is relatively high. As speed increases, the transition point tends to move forward. As the angle of attack increases, the transition point also tends to move forward. With higher angles of attack and further thickening of the boundary layer, the turbulence becomes so great the air breaks away from the surface of the wing. At this point, the lift of the wing is destroyed and a condition known as a stall has occurred. 


Wingtip Vortices 

Wingtip vortices are caused by the air beneath the wing, which is at the higher pressure, flowing over the wingtip and up toward the top of the wing. The end result is a spiral or vortex that trails behind the wingtip anytime lift is being produced. This vortex is also referred to as wake turbulence, and is a significant factor in determining how closely one airplane can follow behind another on approach to land. The wake turbulence of a large airplane can cause a smaller airplane, if it is following too closely, to be thrown out of control.


Upwash and downwash refer to the effect an airfoil has on the free airstream. Upwash is the deflection of the oncoming airstream, causing it to flow up and over the wing. Downwash is the downward deflection of the airstream after it has passed over the wing and is leaving the trailing edge. This downward deflection is what creates the action and reaction described under lift and Newton’s third law.


Venturi with a superimposed wing


Axes of an Aircraft 

An airplane in flight is controlled around one or more of three axes of rotation. These axes of rotation are the longitudinal, lateral, and vertical. On the airplane, all three axes intersect at the center of gravity. As the airplane pivots on one of these axes, it is in essence pivoting around the center of gravity (CG). The center of gravity is also referred to as the center of rotation.


Aircraft Stability 

When an airplane is in straight-and-level flight at a constant velocity, all the forces acting on the airplane are in equilibrium. If that straight-and-level flight is disrupted by a disturbance in the air, such as wake turbulence, the airplane might pitch up or down, yaw left or right, or go into a roll. If the airplane has what is characterized as stability, once the disturbance goes away, the airplane will return to a state of equilibrium. 


Flight Control Surfaces 

The purpose of flight controls is to allow the pilot to maneuver the airplane, and to control it from the time it starts the takeoff roll until it lands and safely comes to a halt. Flight controls are typically associated with the wing and the vertical and horizontal stabilizers, because these are the parts of the airplane that flight controls most often attach to. In flight, and to some extent on the ground, flight controls provide the airplane with the ability to move around one or more of the three axes. Flight controls function by changing the shape or aerodynamic characteristics of the surface they are attached to.  


Helicopter Aerodynamics 

The helicopter, as we know it today, falls under the classification known as rotorcraft. Rotorcraft is also known as rotary wing aircraft, because instead of their wing being fixed like it is on an airplane, the wing rotates. The rotating wing of a rotorcraft can be thought of as a lift producing device, like the wing of an airplane, or as a thrust producing device, like the propeller on a piston engine.  


Helicopter Axes of Flight 

Helicopters, like airplanes, have a vertical, lateral, and longitudinal axis that passes through the helicopter’s center of gravity. Helicopters yaw around the vertical axis, pitch around the lateral axis, and rotate around the longitudinal axis. All three axes will intersect at the helicopter’s center of gravity, and the helicopter pivots around this point. Notice in the figure that the vertical axis passes almost through the center of the main rotor, because the helicopter’s center of gravity needs to be very close to this point. 


Weight-Shift Control, Flexible Wing Aircraft Aerodynamics 

A weight-shift control, flexible wing type aircraft consists of a fabric-covered wing, often referred to as the sail, attached to a tubular structure that has wheels, seats, and an engine and propeller. The wing structure is also tubular, with the fabric covering creating the airfoil shape. The shape of the wing varies among the different models of weight-shift control aircraft being produced, but a delta shaped wing is a very popular design. Within the weight-shift control aircraft community, these aircraft are typically referred to as trikes. 


Powered Parachute Aerodynamics 

A powered parachute has a carriage very similar to the weight-shift control aircraft. Its wing, however, has no support structure or rigidity and only takes on the shape of an airfoil when it is inflated by the blast of air from the propeller and the forward speed of the aircraft, a powered parachute is on its approach to land with the wing fully inflated and rising up above the aircraft. Each colored section of the inflated wing is made up of cells that are open in the front to allow air to ram in, and closed in the back to keep the air trapped inside. In between all the cells there are holes that allow the air to flow from one cell to the next, in order to equalize the pressure within the inflated wing. The wing is attached to the carriage of the aircraft by a large number of nylon or Kevlar lines that run from the tips of the wing all the way to the center. The weight of the aircraft acting on these lines and their individual lengths cause the inflated wing to take its shape. The lines attach to the body of the aircraft at a location very close to where the center of gravity is located, and this attachment point is adjustable to account for balance changes with occupants of varying weights.

You may like these posts